References
- Agarwal, S., Chakraborty, A. and Gopalakrishnaw, S. (2006), "Large deformation analysis for anisotropic inhomogeneous beams using exact linear static solution", Compos. Struct., 72(1), 91-104 https://doi.org/10.1016/j.compstruct.2004.10.019
- Altenbach, H., Altenbach, J. and Kissing, W. (2003), Mechanics of Composite Structural Elements, Engineerig-Monograph (English), Springer-Verlag
- ANSYS 10.0 (2007), Theory Manual
- Atluri, S.N. and Shen, S. (2004), The Meshless Local Petrov-Galerkin Method, Tech Science Press
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element forthe analysis of functionally graded materials", Int. J. Mech. Sci., 45, 519-539 https://doi.org/10.1016/S0020-7403(03)00058-4
- Felippa, C.A. and Park, K.C. (2004), Synthesis Tools for Structural Dynamics and Partitioned Analysis of Coupled Systems, NATO-ARW Workshop on Multi-physics and Multiscale Computer Models in Non-linear Analysis and Optimal Design of Engineering Structures Under Extreme Conditions, Bled, Slovenia, 13-17 June
- FGM Forum (1991), Survey for Application of FGM, The Society of Non-Traditional Technology, Tokyo
- http://www.eumat.org, European Technology Platform on Advanced Engineering Materials and Technologies, 2006
- Jin, J. (2002), The Finite Element Method in Electromagnetics, John Wiley and Sons
- Kawasaki, A. and Watanabe, R. (1997), "Concept and P/M fabrication of functionallygradient materials", Ceramics Int., 23(1), 73-83 https://doi.org/10.1016/0272-8842(95)00143-3
- Koizumi, M. (1997), FGM Activity in Japan, Composites, No. 28B, Volume Part B
- Koizumi, M. and Niino, M. (1995), Overview of FGM Research in Japan, MRS Bulletin, No. 20, pp.19-21
- Kutis , V. and Murin, J. (2006), "Stability of a slender beam-column with locally varying Young's modulus", Struct. Eng. Mech., An Int. J., 23(1), 15-27 https://doi.org/10.12989/sem.2006.23.1.015
- Kutia , V. (2001), "Beam element with variation of cross-section satisfying local and global equilibrium conditions", Ph.D. thesis, Slovak University of Technology, Bratislava
- Lee, J.L. (2005), "Layerwise laminate analysis of functionally graded piezoelectric bimorph beams", J. Intelligent Mater. Syst. Struct., 16(4), 365-371 https://doi.org/10.1177/1045389X05050100
- Murin, J. and Kutis , V. (2002), "3D-beam element with continuous variation of the cross-sectional area", Comput. Struct., 80, 329-338 https://doi.org/10.1016/S0045-7949(01)00173-0
- Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362(1-2), 17-39 https://doi.org/10.1016/S0921-5093(03)00581-1
- Rubin, H. (1999), Bautechnik, Koln, Ernst and Sohn
- Zhu, H. and Sankar, B.H. (2004), "A Combine Fourier series-Galerkin method for the analysis of functionally graded beams", J. Appl. Mech., 71(3), 421-424 https://doi.org/10.1115/1.1751184
Cited by
- Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials vol.89, pp.11-12, 2011, https://doi.org/10.1016/j.compstruc.2010.10.012
- An effective multilayered sandwich beam-link finite element for solution of the electro-thermo-structural problems vol.87, pp.23-24, 2009, https://doi.org/10.1016/j.compstruc.2009.06.009
- An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration vol.61, pp.4, 2008, https://doi.org/10.12989/sem.2017.61.4.551