References
- Bathe, K.J. (1982), "Finite element procedures in engineering analysis", Prentice-Hall, Englewood Cliffs, New Jersey
- Carnahan, B., Luther, H.A. and Wilkes, J.O. (1977), Applied Numerical Methods, New York: Wiley
- Chang, T.P. and Chang, C.Y. (1998), "Vibration analysis of beams with a two degree-of-freedom spring-mass system", J. Solids Struct., 35(5-6), 383-401 https://doi.org/10.1016/S0020-7683(97)00037-1
- Chen, D.W. and Liu, T.L. (2006), "Free and forced vibrations of a tapered cantilever beam carrying multiple point masses", Struct. Eng. Mech., 23(2), 209-216 https://doi.org/10.12989/sem.2006.23.2.209
- Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill, Inc. New York
- Dowell, E.H. (1979), "On some general properties of combined dynamic systems", J. Appl. Mech., ASME, 46, 206-209 https://doi.org/10.1115/1.3424499
- Ercoli, L. and Laura, P.A.A. (1987), "Analytical and experimental investigation on continuous beams carrying elastically mounted masses", J. Sound Vib., 114, 519-533 https://doi.org/10.1016/S0022-460X(87)80021-4
- Golub, G.H., Underwood R. and Wilkinson J.H. (1972), "The Lanczos algorithm for the symmetric Ax = Lambda * Bx Problem", Stanford University, Computer Science Department
- Gurgoze, M. (1996), "On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system", J. Sound Vib., 190, 149-162 https://doi.org/10.1006/jsvi.1996.0053
- Gurgoze, M. (1998), "On the alternative formulations of the frequency equation of a Bernoulli-euler beam to which several spring-mass systems are attached in-span", J. Sound Vib., 217, 585-595 https://doi.org/10.1006/jsvi.1998.1796
- Gurgoze, M. (1999), "Alternative formulations of the characteristic equation of a Bernoulli-euler beam to which several viscously damped spring-mass systems are attached in-span", J. Sound Vib., 223, 666-677 https://doi.org/10.1006/jsvi.1998.2146
- Gurgoze, M. (2005), "On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered", J. Sound Vib., 282, 1221-1230 https://doi.org/10.1016/j.jsv.2004.04.020
- Larrondo, H., Avalos, D. and Laura, P.A.A. (1992), "Natural frequencies of Bernoulli beam carrying an elastically mounted concentrated mass", Ocean Eng., 19, 461-468 https://doi.org/10.1016/0029-8018(92)90004-N
- Manikanahally, D.N. and Crocker, M.J. (1991), "Vibration absorbers for hysteretically damped mass-load beams", J. Vib. Acoust., ASME, 113, 116-122 https://doi.org/10.1115/1.2930145
- Meirovitch, L. (1967), Analytical Methods in Vibrations, Macmillan Company, London
- Nicholson, J.W. and Bergman, L.A. (1986), "Free vibration of combined dynamical systems", J. Eng. Mech., 112, 1-13 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(1)
- Rossit, C.A. and Laura, P.A.A. (2001), "Free vibrations of a cantilever beam with a spring-mass system attached to the free end", Ocean Eng., 28, 933-939 https://doi.org/10.1016/S0029-8018(00)00055-X
- Wang, J.R., Liu, T.L. and Chen, D.W. (2007), "Free vibration analyses of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia", Struct. Eng. Mech., 26(1), 1-14 https://doi.org/10.12989/sem.2007.26.1.001
- Wu, J.J. and Whittaker, A.R. (1999), "The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-dof spring-mass systems", J. Sound Vib., 227(2), 361-381 https://doi.org/10.1006/jsvi.1999.2324
- Wu, J.J. (2002), "Alternative approach for free vibration of beams carrying a number of two degree-of-freedom spring-mass systems", J. Struct. Eng., ASCE, 128(12), 1604-1616 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1604)
- Wu, J.J. (2003), "Use of effective stiffness matrix for the free vibration analyses of a non-uniform cantilever beam carrying multiple two degree-of-freedom spring-damper-mass systems", Comput. Struct., 81(24-25), 2319-2330 https://doi.org/10.1016/S0045-7949(03)00315-8
- Wu, J.J. (2005), "Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems", Struct. Eng. Mech., 21(6), 713-735 https://doi.org/10.12989/sem.2005.21.6.713
- Wu, J.S. and Chou, H.M. (1998), "Free vibration analysis of a cantilever beam carrying any number of elastically mounted pointed masses with the analytical-and-numerical-combined method", J. Sound Vib., 213, 317-332 https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S., Chen, D.W. and Chou, H.M. (1999), "On the eigenvalues of a uniform cantilever beam carrying any number of spring-damper-mass systems", J. Numer. Meth. Eng., 45, 1277-1295 https://doi.org/10.1002/(SICI)1097-0207(19990730)45:9<1277::AID-NME630>3.0.CO;2-A
- Wu, J.S. and Chen, D.W. (2000), "Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with dampers", J. Sound Vib., 229(3), 549-578 https://doi.org/10.1006/jsvi.1999.2504
- Wu, J.S. and Chen, D.W. (2001), "Free vibration analysis of a timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique", J. Numer. Meth. Eng., 50, 1039-1058 https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D