DOI QR코드

DOI QR Code

Free vibration analysis of plates resting on elastic foundations using modified Vlasov model

  • Received : 2006.02.20
  • Accepted : 2008.01.23
  • Published : 2008.04.20

Abstract

An application is presented of a modified Vlasov model to the free vibration analysis of plates resting on elastic foundations. The effects of the subsoil depth, the ratio of the plate dimensions, the ratio of the subsoil depth to the plate dimension in the longer direction, and the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on an elastic foundation are investigated. This analysis has been caried out by the aid of a computer program. The first ten frequency parameters are presented in tabular and the graphical forms to evaluate the effects of the parameters considered in this study. Then mode shapes corresponding to the first six of the frequency parameters are given in graphs. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on an elastic foundation is generally larger than those of the other parameters considered in this study.

Keywords

References

  1. Ayvaz, Y. and Ozgan, K. (2002), "Application of modified Vlasov model to free vibration analysis of beams resting on elastic foundations", J. Sound Vib., 255, 111-127 https://doi.org/10.1006/jsvi.2001.4143
  2. Ayvaz, Y., Daloglu, A. and Dogangun, A. (1998), "Application of a modified Vlasov model to earthquake analysis of plates resting on elastic foundations", J. Sound Vib., 212, 499-509 https://doi.org/10.1006/jsvi.1997.1394
  3. Celep, Z. and Guler, K. (2004), "Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation", J. Sound Vib., 276, 449-458 https://doi.org/10.1016/j.jsv.2003.10.062
  4. Celep, Z. and Guler, K. (2007), "Axisymmetric forced vibrations of an elastic free circular plate on a tensionless two parameter foundation", J. Sound Vib., 301, 495-509 https://doi.org/10.1016/j.jsv.2006.09.029
  5. Daloglu, A., Dogangun, A. and Ayvaz, Y. (1999), "Dynamic analysis of foundation plates using a consistent Vlasov model", J. Sound Vib., 224, 941-951 https://doi.org/10.1006/jsvi.1998.2144
  6. Guler, K. and Celep, Z. (1995), "Static and dynamic responses of a circular plate on a tensionless elastic foundation", J. Sound Vib., 183(2), 185-195 https://doi.org/10.1006/jsvi.1995.0248
  7. Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6), 699-712 https://doi.org/10.12989/sem.2005.21.6.699
  8. Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J. Appl. Phy., 21, 55-58 https://doi.org/10.1063/1.1699420
  9. Huang, M.-H. and Thambiratnam, D.P. (2001), "Analysis of plate resting on elastic supports and elastic foundation by finite strip method", Comput. Struct., 79, 2547-2557 https://doi.org/10.1016/S0045-7949(01)00134-1
  10. Jones, R. and Xenophontos, J. (1979), "The Vlasov foundation models", Int. J. Mech. Sci., 19, 317-323
  11. Kolar, V. and Nemec, I. (1989), Modelling of Soil-Structure Interaction, Amsterdam: Elsevier Scientific Publishing Company
  12. Kucukarslan, K. and Banerjee, P.K. (2004), "Inelastic dynamic analysis of pile-soil-structure interaction", Int. J. Comput. Eng. Sci., 5(1), 245-258 https://doi.org/10.1142/S1465876304002344
  13. Liu, F.-L. (2000), "Rectangular thick plates on Winkler foundation: Differential quadrature element solution", Int. J. Solids Struct., 37, 1743-1763 https://doi.org/10.1016/S0020-7683(98)00306-0
  14. Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P.L. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356 https://doi.org/10.1016/j.soildyn.2004.01.001
  15. Mezaini, N. (2006), "Effects of soil-structure interaction on the analysis of cylindrical tanks", Practice Period. Struct. Des. Const., 11(1), 50-57 https://doi.org/10.1061/(ASCE)1084-0680(2006)11:1(50)
  16. Omurtag, M.H. and Kadioglu, F. (1998), "Free vibration analysis of orthotropic plates resting on Pasternak foundation be mixed finite element formulation", Comput. Struct., 67, 253-265 https://doi.org/10.1016/S0045-7949(97)00128-4
  17. Selvaduari, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction. Amsterdam: Elsevier Scientific Publishing Company
  18. Setoodeh, A.R. and Karami, G. (2004), "Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM", Eng. Struct., 26, 211-220 https://doi.org/10.1016/j.engstruct.2003.09.009
  19. Shen, H.-S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations", J. Sound Vib., 244, 299-320 https://doi.org/10.1006/jsvi.2000.3501
  20. Silva, A.R.D., Silveira, R.A.M. and Gonçalves, P.B. (2001), "Numerical methods for analysis of plates on tensionless elastic foundations", Int. J. Solids Struct., 38, 2083-2100 https://doi.org/10.1016/S0020-7683(00)00154-2
  21. Straughan, W.T. (1990), "Analysis of plates on elastic foundation", Ph.D. Thesis, The Graduate School of Texas Tech University, Lubbock, Texas
  22. Turhan, A. (1990), "A consistent Vlasov model for analysis of plates on elastic foundation using finite element method", Ph.D. Thesis, The Graduate School of Texas Tech University, Lubbock, Texas
  23. Vallabhan, C.V.G. and Das, Y.C. (1988), "A parametric study of beams on elastic foundations", J. Eng. Mech. Div., 114, 2072-2082 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)
  24. Vallabhan, C.V.G. and Das, Y.C. (1991), "A refined model for beams on elastic foundation", Int. J. Solids Struct., 27, 629-637 https://doi.org/10.1016/0020-7683(91)90217-4
  25. Vallabhan, C.V.G. and Das, Y.C. (1991), "Modified Vlasov model for beams on elastic foundation", J. Geotech. Eng., 117, 956-966 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
  26. Weaver, W. and Johnston, P.R. (1984), Finite Element for Structural Analysis. Englewood Cliffs, NJ: Prentice- Hall
  27. Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations", Int. J. Mech. Sci., 45, 1229-1244 https://doi.org/10.1016/S0020-7403(03)00141-3
  28. Yu, L., Shen, H.-S. and Huo, X.-P. (2007), "Dynamic response of Reissner-Mindlin plates with free edges resting on tensionless elastic foundation", J. Sound Vib., 299, 212-228 https://doi.org/10.1016/j.jsv.2006.07.015
  29. Zienkiewicz, O.C. (1977), The Finite Element Method. London: McGraw-Hill Ltd. (The third edition)
  30. Celik, M. and Saygun, A. (1999), "A method for the analysis of plates on a two-parameter foundation", Int. J. Solids Struct., 36, 2891-2915 https://doi.org/10.1016/S0020-7683(98)00135-8

Cited by

  1. Development of Analysis Method for Mat Foundations Considering Coupled Soil Springs vol.30, pp.12, 2014, https://doi.org/10.7843/kgs.2014.30.12.41
  2. An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.573
  3. 3D analytical method for mat foundations considering coupled soil springs vol.8, pp.6, 2015, https://doi.org/10.12989/gae.2015.8.6.845
  4. Nonlinear vibration of hybrid composite plates on elastic foundations vol.37, pp.4, 2008, https://doi.org/10.12989/sem.2011.37.4.367
  5. Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads vol.44, pp.2, 2008, https://doi.org/10.12989/sem.2012.44.2.139
  6. Dynamic Analysis of Thick Plates Resting on Winkler Foundation Using a New Finite Element vol.44, pp.1, 2008, https://doi.org/10.1007/s40996-019-00260-4