References
- Anderson, T.L. (2005), Fracture Mechanics: Fundamentals and Applications, 3rd edition, Taylor & Francis.
- Aoki, S., Kishimoto, K. and Sakata, M. (1981), "Energy-release rate in elastic-plastic fracture problems", J Appl. Mech., 48, 825-829. https://doi.org/10.1115/1.3157741
- Atluri, S.N. (1982), "Path-independent integrals in finite elasticity and inelasticity, with body force, inertia and arbitrary crack-face conditions", Eng. Fract. Mech., 16, 341-364. https://doi.org/10.1016/0013-7944(82)90113-8
- Borouchaki, H., George, P.L. and Mohammadi, B. (1997), "Delaunay mesh generation governed by metric specifications. Part II. Application", Finite Elem. Anal. Des., 25, 85-109. https://doi.org/10.1016/S0168-874X(96)00065-0
- Dechaumphai, P., Phongthanapanich, S. and Bhandhubanyong, P. (2003), "Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks", Struct. Eng. Mech., 15, 563-578. https://doi.org/10.12989/sem.2003.15.5.563
- Frey, WH. (1991), "Mesh relaxation: A new technique for improving triangulations", Int. J. Num. Meth. Eng., 31, 1121-1133. https://doi.org/10.1002/nme.1620310607
- Kumar, V, German, M.D. and Shih, C.F. (1981), "An engineering approach for elastic-plastic fracture analysis", EPRI Report NP-1931, Electric Power Research Institute, Palo Alto, CA.
- Kumar, V, Schumacher, B.I. and German, M.D. (1991), "Effect of thermal and residual stresses on the J-integral elastic-plastic fracture analysis", Comp. Struct., 40(2), 487-501. https://doi.org/10.1016/0045-7949(91)90374-U
- Li, F.Z., Shih, C.F. and Needleman, A. (1985), "A comparison of methods for calculating energy release rates", Eng. Fract. Mech., 21(2),405-421. https://doi.org/10.1016/0013-7944(85)90029-3
- Moran, B. and Shih, C.F. (1987), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27(6), 615-642. https://doi.org/10.1016/0013-7944(87)90155-X
- Nishioka, T. (1997), "Computational dynamic fracture mechanics", Int. I Fract., 86, 127-159. https://doi.org/10.1023/A:1007376924191
- Nishioka, T., Tokudome, H. and Kinoshita, M. (2001), "Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation", Int. J. Solids Struct., 38, 5273-5301. https://doi.org/10.1016/S0020-7683(00)00345-0
- Nishioka, T. and Stan, F. (2003), "A hybrid experimental-numerical study on the mechanism of three-dimensional dynamic fracture", Comput. Model. Eng. Sci., 4, 119-140.
- Phongthanapanich, S. and Dechaumphai, P. (2004), "Modified multidimensional dissipation scheme on unstructured meshes for high-speed compressible flow analysis", Int. J. Comput. Fluid D., 18, 631-640. https://doi.org/10.1080/10618560412331297641
- Phongthanapanich, S., Traivivatana S., Boonmaruth, P. and Dechaumphai, P. (2006), "Nodeless variable finite element method for heat transfer analysis by means of flux-based formulation and mesh adaptation", Acta Mech. Sin., 22, 138-147. https://doi.org/10.1007/s10409-006-0097-3
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
- Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three-dimensional crack front in a thermally stressed body", Int. J. Fract., 30, 79-102.
Cited by
- Modeling and optimization of a cracked pipeline under pressure by an interactive method: design of experiments 2017, https://doi.org/10.1007/s12008-017-0385-0
- Fracture analysis of plastically graded material with thermo-mechanical J-integral vol.235, pp.5, 2021, https://doi.org/10.1177/1464420721991583