DOI QR코드

DOI QR Code

Cubic normal distribution and its significance in structural reliability

  • Zhao, Yan-Gang (Department of Architecture and Civil Engineering, Nagoya Institute of Technology) ;
  • Lu, Zhao-Hui (Department of Architecture and Civil Engineering, Nagoya Institute of Technology)
  • Received : 2006.02.28
  • Accepted : 2007.12.11
  • Published : 2008.02.20

Abstract

Information on the distribution of the basic random variable is essential for the accurate analysis of structural reliability. The usual method for determining the distributions is to fit a candidate distribution to the histogram of available statistical data of the variable and perform approximate goodness-of-fit tests. Generally, such candidate distribution would have parameters that may be evaluated from the statistical moments of the statistical data. In the present paper, a cubic normal distribution, whose parameters are determined using the first four moments of available sample data, is investigated. A parameter table based on the first four moments, which simplifies parameter estimation, is given. The simplicity, generality, flexibility and advantages of this distribution in statistical data analysis and its significance in structural reliability evaluation are discussed. Numerical examples are presented to demonstrate these advantages.

Keywords

References

  1. Ang, A.H.-S. and Tang, W.H. (1975), Probability Concepts in Engineering Planning and Design. Vol I: Basic Principles, John Wiley & Sons, New York
  2. Chen, X. and Tung, Y.K. (2003), "Investigation of polynomial normal transformation", Struct. Saf., 25(4), 423-445 https://doi.org/10.1016/S0167-4730(03)00019-5
  3. Der Kiureghian, A. (2001), "Analysis of structural reliability under model and statistical uncertainties: A Bayesian approach", Comput. Struct. Eng., 1(2), 81-87
  4. Fleishman, A.L. (1978), "A method for simulating non-normal distributions", Psychometrika, 43(4), 521-532 https://doi.org/10.1007/BF02293811
  5. Grigoriu, M. (1983), "Approximate analysis of complex reliability problems", Struct. Saf., 1(4), 277-288 https://doi.org/10.1016/0167-4730(82)90004-2
  6. Hong, H.P. and Lind, N.C. (1996), "Approximation reliability analysis using normal polynomial and simulation results", Struct. Saf., 18(4), 329-339 https://doi.org/10.1016/S0167-4730(96)00018-5
  7. Johnson, N.L. and Kotz, S. (1970), Continuous Univariate Distributions-1, John Wiley & Sons, New York
  8. Lind, N.C. and Chen, X. (1986), "Consistent distribution parameter estimation for reliability analysis", Struct. Saf., 4(2), 141-149 https://doi.org/10.1016/0167-4730(86)90028-7
  9. Lind, N.C. and Nowak, A.S. (1988), "Pooling expert opinions on probability distribution", J. Engng. Mech., ASCE, 114(2), 328-341 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:2(328)
  10. MacGregor, J.G. (1988), Reinforced Concrete Mechanics and Design. Prentice-Hall, Englewood Cliffs, NJ
  11. Nadarajah, S. and Kotz, S. (2006), "The beta exponential distribution", Reliab. Eng. Syst. Saf., 91(6), 689-697 https://doi.org/10.1016/j.ress.2005.05.008
  12. Ono, T., Idota, H. and Kawahara, H. (1986), "A statistical study on resistances of steel columns and beams using higher order moments", J. Struct. Constr. Eng., AIJ, Tokyo, 370, 19-37. (in Japanese)
  13. Ramberg, J. and Schmeiser, B. (1974), "An approximate method for generating asymmetric random variables", Comm. ACM, 17(2), 78-82 https://doi.org/10.1145/360827.360840
  14. Schueller, G.I. (2007), "On procedures for reliability assessment of mechanical systems and structures", Struct. Eng. Mech., 25(3), 275-289 https://doi.org/10.12989/sem.2007.25.3.275
  15. Stuart, A. and Ord, J.K. (1987), Kendall's Advanced Theory of Statistics, Vol.1, Charles Griffin & Company Ltd., London
  16. Tichy, M. (1993), Applied Methods of Structural Reliability, Kluwer academic publishers, Dordrecht/Boston/ London
  17. Wolfram, S. (1999), The Mathematica Book, 4th edition, Wolfram Media/Cambridge University Press
  18. Xie, M., Tang, Y. and Goh, T.N. (2002) "A modified Weibull extension with bathtub-shaped failure rate function", Reliab. Eng. Syst. Saf., 76(3), 279-285 https://doi.org/10.1016/S0951-8320(02)00022-4
  19. Zhao, Y.G. and Ang, A.H.-S. (2002), "Three-Parameter Gamma distribution and its significance in structure", Comput. Struct. Eng., 2(1), 1-10
  20. Zhao, Y.G. and Ono, T. (2000), "New point estimates for probability moments", J. Eng. Mech., ASCE, 126(4), 433-436 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(433)
  21. Zhao, Y.G., Ono, T. and Kiyoshi, I. (2002), "Monte Carlo simulation using moments of random variables", J. Asian Archi. Build. Eng., 1(1), 13-20 https://doi.org/10.3130/jaabe.1.13
  22. Zhao, Y.G. and Ono, T. (2004), "On the problems of the fourth moment method", Struct. Saf., 26(3), 343-347 https://doi.org/10.1016/j.strusafe.2003.10.001
  23. Zhao, Y.G. and Lu, Z.H. (2007), "Fourth moment standardization for structural reliability assessment", J. Struct. Eng., ASCE, 133(7), 916-924 https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(916)
  24. Zong, Z. and Lam, K.Y. (1998), "Estimation of complicated distributions using B-spline functions", Struct. Saf., 20(4), 341-355 https://doi.org/10.1016/S0167-4730(98)00019-8
  25. Zong, Z. and Lam, K.Y. (2000), "Bayesian estimation of complicated distributions", Struct. Saf., 22(1), 81-95 https://doi.org/10.1016/S0167-4730(99)00042-9
  26. Zong, Z. and Lam, K.Y. (2001), "Bayesian estimation of 2-dimensional complicated distributions", Struct. Saf., 23(2), 105-121 https://doi.org/10.1016/S0167-4730(01)00006-6

Cited by

  1. Experimental study on bridge–track system temperature actions for Chinese high-speed railway vol.18, pp.2, 2018, https://doi.org/10.1016/j.acme.2017.08.006
  2. A Simple Third-Moment Reliability Index vol.16, pp.1, 2017, https://doi.org/10.3130/jaabe.16.171
  3. First passage probability assessment of stationary non-Gaussian process using the third-order polynomial transformation pp.2048-4011, 2018, https://doi.org/10.1177/1369433218782873
  4. Estimation of load and resistance factors based on the fourth moment method vol.36, pp.1, 2010, https://doi.org/10.12989/sem.2010.36.1.019
  5. Monotonic Expression of Polynomial Normal Transformation Based on the First Four L-Moments vol.146, pp.7, 2008, https://doi.org/10.1061/(asce)em.1943-7889.0001787
  6. Reliability Assessment on Pile Foundation Bearing Capacity Based on the First Four Moments in High-Order Moment Method vol.2021, pp.None, 2008, https://doi.org/10.1155/2021/2082021
  7. Stochastic finite element method based on point estimate and Karhunen-Loéve expansion vol.91, pp.4, 2021, https://doi.org/10.1007/s00419-020-01819-8