References
- Cha, P.D. (2001), 'Alternative formulations to obtain the eigensolutions of a continuous structure to which spring-mass systems are attached', J. Sound Vib., 246, 741-750 https://doi.org/10.1006/jsvi.2001.3604
- Chen, D.W. and Wu, J.S. (2002), 'The exact solutions for the natural frequencies and mode shapes of nonuniform beams with multiple spring-mass systems', J. Sound Vib., 255, 299-232 https://doi.org/10.1006/jsvi.2001.4156
- Gokda , H. and Kopmaz, O. (2004), 'Eigenfrequencies of a combined system including two continua connected by discrete elements', J. Sound Vib., 284, 1203-1216 https://doi.org/10.1016/j.jsv.2004.08.022
- Gürgöze, M. (1996a), 'On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass system', J. Sound Vib., 190, 149-162 https://doi.org/10.1006/jsvi.1996.0053
- Gürgöze, M. (1996b), 'On the eigenfrequencies of cantilevered beams carrying a tip mass and spring-mass inspan', Int. J. Mech. Sci., 38(12), 1295-1306 https://doi.org/10.1016/0020-7403(96)00015-X
- Gurgoze, M. (2005), 'On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered', J. Sound Vib., 282, 1221-1230 https://doi.org/10.1016/j.jsv.2004.04.020
- Gurgoze, M. and Zeren, S. (2006), 'On the eigencharacteristics of an axially vibrating viscoelastic rod carrying a tip mass and its representation by a single degree-of-freedom system', J. Sound Vib., 294, 388-396 https://doi.org/10.1016/j.jsv.2005.11.006
- Gurgoze, M., Çakar, O. and Zeren, S. (2006), 'On the frequency equation of a combined system consisting of a simply supported beam and in-span helical spring-mass with mass of the helical spring considered', J. Sound Vib., 295, 436-449 https://doi.org/10.1016/j.jsv.2006.01.027
- James, M.L., Smith, G.M., Wolford, J.C. and Whaley, P.W. (1994) Vibration of Mechanical and Structural Systems, HarperCollins College Publishers, New York
- Li, Q.S., Fang, J.Q. and Jeary, A.P. (2000a), 'Free vibration analysis of cantilevered tall structures under various axial loads', Eng. Struct., 22, 525-534 https://doi.org/10.1016/S0141-0296(98)00124-2
- Li, Q.S., Li, G.Q. and Liu, D.K. (2000b), 'Exact solutions for longitudinal vibration of rods coupled by translational springs', Int. J. Mech. Sci., 42, 1135-1152 https://doi.org/10.1016/S0020-7403(99)00038-7
- Li, Q.S., Yang, K., Zhang, L. and Zhang, N. (2002), 'Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method', Int. J. Mech. Sci., 44, 2067-2087 https://doi.org/10.1016/S0020-7403(02)00170-4
- Lord Rayleigh (1945), Theory of Sound (two volumes), Dover Publications, New York
- Qiao, H., Li, Q.S. and Li, G.O. (2002), 'Vibratory characteristics of non-uniform Euler-Bernoulli beams carrying an arbitrary number of spring-mass systems', Int. J. Mech. Sci., 44, 725-743 https://doi.org/10.1016/S0020-7403(02)00007-3
- Tauchert, T.R. (1974), Energy Principles in Structural Mechanics, McGraw-Hill, New York
- Wu, J.J. (2002), 'Alternative approach for free vibration of beams carrying a number of two-degree of freedom spring-mass systems', J. Struct. Eng., 128, 1604-1616 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1604)
- Wu, J.J. (2004), 'Free vibration analysis of beams carrying a number of two-degree-of-freedom spring-dampermass systems', Finite Elem. Anal. Des., 40, 363-381 https://doi.org/10.1016/S0168-874X(03)00052-0
- Wu, J.J. (2005), 'Use of equivalent mass method for free vibration analyses of a beam carrying multiple two-dof spring-mass systems with inertia effect of the helical springs considered', Int. J. Numer. Meth. Eng., 65, 653-678 https://doi.org/10.1002/nme.1460
- Wu, J.J. (2006), 'Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load', J. Sound Vib., 297, 981-999 https://doi.org/10.1016/j.jsv.2006.05.011
- Wu, J.S. and Chou, H.M. (1999), 'A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses', J. Sound Vib., 220, 451-468 https://doi.org/10.1006/jsvi.1998.1958
- Wu, J.S. and Chen, D.W. (2000), 'Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with dampers', J. Sound Vib., 229, 549-578 https://doi.org/10.1006/jsvi.1999.2504
Cited by
- Dynamic stiffness matrix of an axially loaded slenderdouble-beam element vol.35, pp.6, 2010, https://doi.org/10.12989/sem.2010.35.6.717
- Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1105
- Consideration of the masses of helical springs in forced vibrations of damped combined systems vol.38, pp.3, 2011, https://doi.org/10.1016/j.mechrescom.2011.03.001
- Random vibration mitigation of beams via tuned mass dampers with spring inertia effects vol.54, pp.9, 2008, https://doi.org/10.1007/s11012-019-00983-8