References
- Choi, C.K. and Noh, H.C. (1996), 'Stochastic finite element analysis of plate structures by weighted integral method', Struct. Eng. Mech., 4(6), 703-715 https://doi.org/10.12989/sem.1996.4.6.703
- Choi, C.K. and Noh, H.C. (1996), 'Stochastic finite element analysis with direct integration method', Proc., 4th Int. Conf. on Civil Eng., Manila, Phillippines, 522-531
- Choi, C.K. and Noh, H.C. (2000), 'Weighted integral SFEM including higher order terms', J. Eng. Mech. ASCE, 126(8), 859-866 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
- Contreras, H. (1980), 'The stochastic finite element method', J. Comput. Struct., 12, 341-348 https://doi.org/10.1016/0045-7949(80)90031-0
- El-Tawil, M., El-Tahan, W. and Hussein, A. (2005), 'A proposed technique of SFEM on solving ordinary random differential equation', J. Appl. Math. Comput., 161, 35-47 https://doi.org/10.1016/j.amc.2003.11.034
- Elishakoff, I., Impollonia, N. and Ren, Y.J. (1999), 'New exact solutions for randomly loaded beams with stochastic flexibility', Int. J. Solids Struct., 36, 2325-2340 https://doi.org/10.1016/S0020-7683(98)00113-9
- Elishakoff, I., Ren, Y.J. and Shinozoka, M. (1996), 'Some critical observations and attendant new results in the finite element method for stochastic problems', Chaos Soliton Fract., 7(4), 597-609 https://doi.org/10.1016/0960-0779(95)00060-7
- Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1995), 'Improved finite element method for stochastic problems', Chaos Soliton Fract., 5(5), 833-846 https://doi.org/10.1016/0960-0779(94)00157-L
- Ghanem, R. (1999), 'Higher order sensitivity of heat conduction problems to random data using the spectral stochastic finite element method', J. Eng. Mech., ASME, 121, 290-299
- Ghanem, R. and Spanos, P. (1991), Stochastic Finite Elements: Spectral Approach, Springer Verlag, N.Y.
- Imamura, T., Meesham, W.C. and Siegel, A. (1963), 'Symbolic calculus of the Wiener-Hermite Functionals', J. Math. Phys., 6(5), 695-706 https://doi.org/10.1063/1.1704327
- Kleiber, M. and Hien, T.D. (1992), 'The stochastic finite element method: Basic perturbation technique and computer implementation', Wiley & Sons, Chrichester
- Lawanwisut, W., Li, C.Q. and Novak, D. (2003), 'Efficient simulation of random fields using orthogonal transformation and lati hypercube samoling', Int. J. Mater. Struct. Reliab., 19-29
- Liu, W.K., Belytschiko, T. and Mani, A. (1986), 'Probabilistic finite elements in non-linear structural dynamics', Comput. Method. Appl. M., 57, 61-81
- Liu, W.K., Belytschko, T. and Besterfield, G.H. (1989), 'Probabilistic finite element method' In Liu W.K. and Belytschko T., editors, Computational Mechanics of Probabilistic and Reliability Analysis. Elmepress International
- Liu, W.K., Belytschko, T. and Mani, A. (1985), 'Probabilistic finite elements for transient analysis in non-linear continua', Advances in aerospace Structural Analysis, Proceedings ASME, WAM, Miami Beach, FL., Edited by O.H. Burnside and C.H. Pharr, AD-09, 9-24
- Liu, W.K., Besterfield, G. and Mani, A. (1986), 'Random field finite elements', Int. J. Num. Meth. Eng., 23, 1831-1845 https://doi.org/10.1002/nme.1620231004
- Loeve, M. (1977), Probability Theory, 4th edition, Springer-Verlag, New York
- Noh, H.C. and Choi, C.K. (2005), 'Added effect of uncertain geometrical parameter on the response variability of Mindlin plate', Struct. Eng. Mech., 20(4), 477-494 https://doi.org/10.12989/sem.2005.20.4.477
- Noh, H.C. and Kwak, H.G. (2006), 'Response variability due to randomness in Poisson's ratio for plane-strain and plain-stress states', Int. J. Solids Struct., 43(5), 1093-1116 https://doi.org/10.1016/j.ijsolstr.2005.03.072
- Oden, J.T. (1979), Applied Functional Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
- Padovan, J. and Guo, Y.H. (1989), 'Analysis of steady response of probabilistic systems', In Liu, W.K. and Belytschko, T., editors, Computational Mechanics of Probabilistic and Reliability Analysis. Elmepress International
- Parzen, E. (1962), Stochastic Processes, Holden-Day, San Francisco
- Pukl, R., Novak, D. and Bergmeister, K. (2003), 'Reliability assessment of concrete structures', in Bicanic, N. et al., eds., 'Computational Modelling of Concrete Structures', Proceedings of the Euro-C 2003 conference, Swets & Zeitlinger B.V., Lisse, 793-803, The Netherlands
- Reddy, J.N. (1985), An Introduction to Finite Element Methods, Mc Graw-Hill, New York
- Rosenblatt, M. (1962), Random Processes, Oxeford University Press, New York
- Shinozuka, M. and Yamazaki, F. (1988), 'Stochastic finite element analysis: an introduction', In Ariaratnam, S. T., Schueller, G.I. and Elishakoff, I., editors, (1988), Stochastic Structural Dynamics: Progress in Theory and Application. Elsevier Applied Sciences Publ. Ltd.
- Spanos, P.D. and Ghanem, R. (1989), 'Stochastic finite element expansion for random media', J. Eng. Mech., ASCE, 115(5), 1035-1053 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
- Van Tree, H.L. (1968), Detection, Estimation and Modulation Theory, Part I, Wiley, New York
- Vanmarcke, E.H. and Grigoriu, M. (1983), 'Stochastic finite element analysis of simple beams', J. Eng. Mech. ASCE, 109, 1203-1215 https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
- Vouwenvelder, A.C.W.M. (2004), 'Spatial correlation aspects in deterioration models', in Stangenberg et al., eds., ICLODC 2004, Proceedings of the 2nd International Conference Lifetime-Oriented Design Concepts, Ruhr-University Bochum, 31-39, Germany
- Yamazaki, F. and Shinozoka, M. (1990), 'Simulation of stochastic fields by statistical preconditioning', J. Eng. Mech., ASCE, 116(2), 268-287 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(268)
- Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), 'Neumann expansion for stochastic finite-element analysis', J. Eng. Mech., ASCE, 114(8), 1335-1354 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, 4th edition, McGraw-Hill Book Company, New York
Cited by
- A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion vol.125, 2013, https://doi.org/10.1016/j.jqsrt.2013.03.018
- Solution of the stochastic generalized shallow-water wave equation using RVT technique vol.130, pp.12, 2015, https://doi.org/10.1140/epjp/i2015-15249-3
- A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis vol.75, pp.3, 2008, https://doi.org/10.12989/sem.2020.75.3.311
- A full probabilistic solution of a stochastic red blood cells model using RVT technique vol.136, pp.4, 2008, https://doi.org/10.1140/epjp/s13360-021-01332-z