DOI QR코드

DOI QR Code

Free vibrations of anisotropic rectangular plates with holes and attached masses

  • Rossit, C.A. (Dpto. de Ingenieria, Instituto de Mecanica Aplicada, Universidad Nacional del Sur) ;
  • Ciancio, P.M. (Facultad de Ingenieria, Universidad Nacional del Centro de la Provincia de Buenos Aires)
  • 투고 : 2006.12.06
  • 심사 : 2007.08.17
  • 발행 : 2008.01.10

초록

Anisotropic materials are increasingly required in modern technological applications. Certainly, civil, mechanical and naval engineers frequently deal with the situation of analyzing the dynamical behaviour of structural elements being composed of such materials. For example, panels of anisotropic materials must sometimes support electromechanical engines, and besides, holes are performed in them for operational reasons e.g., conduits, ducts or electrical connections. This study is concerned with the natural frequencies and normal modes of vibration of rectangular anisotropic plates supported by different combinations of the classical boundary conditions: clamped, simply - supported and free, and with additional complexities such holes of free boundaries and attached concentrated masses. A variational approach (the well known Ritz method) is used, where the displacement amplitude is approximated by a set of beam functions in each coordinate direction corresponding to the sides of the rectangular plate. Consequently each coordinate function satisfies the essential boundary conditions at the outer edge of the plate. The influence of the position and magnitude of both hole and mass, on the natural frequencies and modal shapes of vibration are studied for a generic anisotropic material. The classical Ritz method with beam functions as spatial approximation proved to be a suitable procedure to solve a problem of such analytical complexity.

키워드

참고문헌

  1. Ashton, J.E. (1969), "Natural modes of free-free anisotropic plates", Shock Vib. Bull., 39(A), 93-100
  2. Ashton, J.E. and Anderson, J.D. (1969), "Natural modes of vibration of boron-epoxy plates", Shock Vib. Bull., 39(4), 81-91
  3. Ashton, J.E. and Waddoups, M.E. (1969), "Analysis of anisotropic plates", J. Compos. Mater., 3, 140-165
  4. Avalos, D.R., Larrondo, H.A. and Laura, P.A.A. (1999), "Analysis of vibrating rectangular anisotropic plates with free-edge holes", J. Sound Vib., 222(4), 691-695 https://doi.org/10.1006/jsvi.1998.2017
  5. Bert, C.W. and Mayberry, B.L. (1969), "Free vibrations of unsymmetrically laminates anisotropic plates with clamped edges", J. Compos. Mater., 3, 282-293 https://doi.org/10.1177/002199836900300207
  6. Ciancio, P.M., Rossit, C.A. and Laura, P.A.A. (2007), "Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass", J. Sound Vib., 302(3), 621-628 https://doi.org/10.1016/j.jsv.2006.11.027
  7. Cupial, P. (1997), "Calculation of the natural frequencies of composite plates by the Rayleigh-Ritz method with orthogonal polynomials", J. Sound Vib., 201(3), 385-387 https://doi.org/10.1006/jsvi.1996.0802
  8. Felix, D.H., Bambill, D.V. and Rossit, C.A. (2004), "Desarrollo de un algoritmo de calculo para la implementacion del metodo de Rayleigh-Ritz en el calculo de frecuencias naturales de vibracion de placas rectangulares con complejidades adicionales", Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 20(2), 123-138
  9. Leissa, A.W. (2005), "The historical bases of the Rayleigh and Ritz methods", J. Sound Vib., 287, 961-978 https://doi.org/10.1016/j.jsv.2004.12.021
  10. Lekhnitskii, S.G. (l968), Anisotropic Plates, Gordon and Breach Science Publishers, New York-London-Paris
  11. Mikhlin, S.G. (l964), Variational Methods in Mathematical Physics, (English translation by T. Boddington), Pergamon Press, Oxford. (first published in Russian in 1957)
  12. Mohan, D. and Kingsbury, H.B. (1971), "Free vibrations of generally orthotropic plates", J. Acoust. Soc. Am., 50, 266-269 https://doi.org/10.1121/1.1912626
  13. Nallim, L.G. and Grossi, R.O. (2003), "On the use of orthogonal polynomials in the study of anisotropic plates", J. Sound Vib., 264, 1201-1207 https://doi.org/10.1016/S0022-460X(02)01523-7
  14. Reddy, J.N. (1997), Mechanics of Laminated Anisotropic Plates: Theory and Analysis, Boca Raton, Florida: CRC Press
  15. Whitney, J.M. (1972), "Free vibrations of anisotropic rectangular plates", J. Acoust. Soc. Am., 52, 448-449 https://doi.org/10.1121/1.1913115
  16. Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, Lancaster, PA, Technomic Publishing

피인용 문헌

  1. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis vol.332, pp.12, 2013, https://doi.org/10.1016/j.jsv.2013.01.012
  2. Dynamic analysis of structures in frequency domain by a new set of Ritz vectors vol.39, pp.5, 2008, https://doi.org/10.12989/sem.2011.39.5.703
  3. Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system vol.40, pp.5, 2011, https://doi.org/10.12989/sem.2011.40.5.637