Evaluation of CO2 Balance in the Barley-Red Pepper and Barley-Soybean Cropping System

보리-고추와 보리-콩 작부체계에서 이산화탄소수지 평가

  • Kim, Gun-Yeob (National Academy of Agricultural Science(NAAS), RDA) ;
  • Suh, Sang-Uk (National Academy of Agricultural Science(NAAS), RDA) ;
  • Ko, Byung-Gu (National Academy of Agricultural Science(NAAS), RDA) ;
  • Jeong, Hyun-Cheol (National Academy of Agricultural Science(NAAS), RDA) ;
  • Roh, Kee-An (National Academy of Agricultural Science(NAAS), RDA) ;
  • Shim, Kyo-Moon (National Academy of Agricultural Science(NAAS), RDA)
  • 김건엽 (농촌진흥청 국립농업과학원) ;
  • 서상욱 (농촌진흥청 국립농업과학원) ;
  • 고병구 (농촌진흥청 국립농업과학원) ;
  • 정현철 (농촌진흥청 국립농업과학원) ;
  • 노기안 (농촌진흥청 국립농업과학원) ;
  • 심교문 (농촌진흥청 국립농업과학원)
  • Received : 2008.10.06
  • Accepted : 2008.12.07
  • Published : 2008.12.30

Abstract

Importance of climate change and its impact on agriculture and environment has increased with the rise Green House Gases (GHGs) concentration in the atmosphere. To slow down the speed of climate change many efforts have been applied in industrial sectors to reduce GHGs emission and to enhance carbon storage. In agricultural sector, many researches have been performed on GHGs emission reduction, but few on the role of carbon sink. In this study, we investigated carbon balance and soil carbon storage in agricultural field in the barley-red pepper and barley-soybean cropping system. With the system for automatic measuring of carbon dioxide, net ecosystem production(NEP) was estimated to be $6.3ton\;CO_2\;ha-1$ for N-P-K chemical fertilizer treatment plot and $10.6ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot in the barley-soybean rotation cropping. In the barley-red pepper rotation cropping, it was $12.0ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer treatment plot and $13.2ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot. Soil carbon storage rate was estimated to be $0.7ton\;C\;ha^{-1}$ for the barley-soybean cropping system and $0.5ton\;C\;ha^{-1}$ for barley-pepper cropping system. In appeared that agricultural lands may contribute to the greenhouse effect as a potential carbon sink preserving carbon into soil.

온실가스의 농도 증가에 따른 지구온난화로 기후변화 및 환경적 영향이 증가하고 있으며, 다른 산업 분야별 온실가스 저감 노력이 계속 되고 있다. 농경지에서 온실가스 배출 저감 및 탄소 수지 연구를 통하여 농업생산 활동이 온실가스를 배출 이외에도 탄소를 고정 또는 축적 기능이 있다는 것을 밝히고자 하였다. 먼저 작물 작부체계에 따른 탄소 수지를 평가하고자 대기 중 이산화탄소 자동측정 장치를 개발하여 $CO_2$ 함량 변화를 조사하였다. 이를 통해 작물 생태계 내에서 보리-콩 및 보리-고추 작부체계의 생태계 순 생산량이 화학비료를 사용한 NPK 처리구와 돈분 퇴비를 추가한 NPK+돈분 퇴비 처리구를 두고 $CO_2$ 함량을 조사하였다. 보리-콩 작부체계의 NPK 및 NPK+퇴비처리구는 각 $6.3,\;10.6ton\;CO_2\;ha^{-1}$ 그리고 보리-고추작부체계에서는 $12.0,\;13.2ton\;CO_2\;ha^{-1}$이 축적된 것 으로 나타났다. 토양 탄소수지 평가에서는 보리-콩 작부체계에서 토양 유기 탄소 축적은 $0.7ton\;C\;ha^{-1}$, 보리-고추에서 $0.5ton\;C\;ha^{-1}$이 토양 중에 저장하였다. 이로써 농경지가 탄소 저장원 역할을 하는 것으로 해석할 수 있다.

Keywords

References

  1. Fang, C. and J.B. Moncrieff, J.B. 1998. An open-top chamber for measuring soil respiration and the influence of pressure difference on $CO_2$ efflux measurement. Functional Ecolology. 12:319-325. https://doi.org/10.1046/j.1365-2435.1998.00189.x
  2. Garrity, D.P., C.Y. Sullivan, and D.G. Watts. 1984. Rapidly determining sorghum canopy photosysthetic rates with a mobile field chamber. Agron J. 76:163-165. https://doi.org/10.2134/agronj1984.00021962007600010040x
  3. Held, A.A., P. Steduto, F. Oegaz, A. Matista, and T.C. Hsiao. 1990. Bowen-ratio/ energy-balance technique for estimating crop net $CO_2$ assimilation, and comparison with a canopy-chamber. Theor Appl Climatol. 42:201-213. https://doi.org/10.1007/BF00865979
  4. Koizumi H., M. Kontturi, S. Mariko, T. Nakadai, Y. Bekku and T. Mela. 1999. Soil Respiration in three soil types in agricultural ecosystems in Finland. Acta Agriculturae Scandinavica, Section B - Plant Soil Science. 49:65-74. https://doi.org/10.1080/09064719950135560
  5. Inter-Agency Committee on Global Environmental Change. 1996. UK National Strategy for GER. Report of Expert Panel.
  6. Kim, G.Y., B.H. Song, B.K. Hyun, K.M. Shim, 2006. Predicting $N_2O$ emission from upland cultivated with pepper through related soil parameters. 39:253-258.
  7. Kutsch, W. and L. Kappen, 1997. Aspects of carbon and nitrogen cycling in soils of the BornHoved Lake district-II:modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different management. Biogeochemistry. 39:207-224. https://doi.org/10.1023/A:1005859629197
  8. LI-COR, inc. 6400-09 Soil Flux Chamber Instruction Manual. 1997.
  9. NIAST(National Institute of Agricultural Science and Technology)(1988), Methods of Soil Chemical Analysis. Sam-Mi press, 20-214.
  10. Norstadt, Fred A., Lynn K. Porter, 1984. Soil gases and temperatures: a beef cattle feedlot compared to alfalfa, Soil Sci. Soc, Am. J. 48:783-389. https://doi.org/10.2136/sssaj1984.03615995004800040017x
  11. Ok, Y.S., S. Lim, and J.G. Kim. 2002. Electrochemical properties of soils - principles and applications. Life Sci. And Natural Resour. Res. 10:69-84.
  12. Parada, C.B., A. Long, and S.N. Davis. 1983. Stable-isotope composition of soil carbon dioxide in the Tucson Basin, Arizona, U.S.A. Isotope geoscience. 1:219-236.
  13. Piao, H.C., Y.Y. Wu, Y.T. Hong, and Z.Y. Yuan. 2000. Soilreleased carbon dioxide from microbial biomass carbon in the cultivated soils of karst areas of southwest China. Biol. Fertil. Soils. 31:422-426. https://doi.org/10.1007/s003749900189
  14. Rochette, P., R.L. Desjardins, E. Pattey, and R. Lessard. 1995. Crop net carbon dioxide exchange rate and radiation use efficiency in soybean. Agron. J. 87:22-28. https://doi.org/10.2134/agronj1995.00021962008700010005x
  15. Sampson, D.A., R.H. Waring, C.A. Maier, C.M. Gough, M.J. Ducey, K.H. Johnsen. 2006. Fertilization effects on forest carbon storage and exchange and net primary production: A new hybrid process model for stand management. Frest Ecology and Management. 221:91-109. https://doi.org/10.1016/j.foreco.2005.09.010
  16. Schlesinger, W. H. 2000. Carbon sequestration in soils: some caution amidst optimism, Agriculture, Ecosystem and Environment. 82:121-127. https://doi.org/10.1016/S0167-8809(00)00221-8
  17. Son, Y., G. Lee and J.Y. Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantations. J. Kor. Soc. Soil Sic. Fertil. 27:290-295.
  18. Suh, S. U., Y. M. Chun, N. Y. Chae, J. Kim, J. H. Lim, M. Yokozawa, M. S. Lee, and J. S. Lee. 2006. A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecol Res. 21:405-414. https://doi.org/10.1007/s11284-005-0137-7
  19. Lou Yunsheng, Z. Li, T. Zhang and Y. Liang. 2004. $CO_2$ emissions from subtropical arable soils of China. Soil Biology and Biochemistry. 36:1835-1842. https://doi.org/10.1016/j.soilbio.2004.05.006
  20. Yang, S.Y., S.S Lim, and Y.S Cho. 2007. Kyoto Mechanisms, CDM Project, Economics Opportunities, Agricultural Policies. Korea Association of Livestock Management