Level I Fugacity Model을 이용한 Biopile 내 유기화합물 5종의 분포 예측

Prediction of Distribution for Five Organic Contaminants in Biopiles by Level I Fugacity Model

  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 김호진 (서울시립대학교 환경원예학과) ;
  • Kim, Kye-Hoon (Dept. of Environ. Horticulture, The University of Seoul) ;
  • Kim, Ho-Jin (Dept. of Environ. Horticulture, The University of Seoul) ;
  • Pollard, Simon J.T. (Centre for Resource Management and Efficiency, Sustainable Systems Department, School of Applied Sciences, Cranfield University)
  • 투고 : 2008.05.15
  • 심사 : 2008.06.12
  • 발행 : 2008.06.30

초록

본 연구는 level I fugacity model을 이용하여 유류오염 토양에서 많이 존재하며 생태적 위해성이 큰 다섯가지 유기성오염물질 (anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene, phenanthrene) 이 기상, 액상, 고상 및 비수용성액체(NAPL)의 네 가지 상(phase)으로 구성된 biopile 내에서 어떻게 분포 하는가를 예측하기 위하여 수행하였다. 이를 위하여 영국 내에서 장기간 유류로 오염된 세 지역으로부터 토양 시료를 채취, 분석하였고 토양 분석 결과와 관련 인자를 level I fugacity model에 입력하여 fugacity 및 오염물질의 토양 중 분포를 구하였다. 다섯 오염물질의 fugacity 간에는 큰 차이가 있었으나 동일 오염물 질은 시료 간 fugacity에서 별다른 차이를 보이지 않았다. 모든 오염물질은 NAPL과 고상에 주로 존재하였으며 토양시료간의 유기탄소함량 차이가 오염물질 의 분배 동태에 큰 영향을 미쳤다. benzene은 기상과 액상에 높은 농도로 존재함으로써 위해성에 근거한 기상과 액상 중 benzene 관리의 중요성을 나타내었다. 반면 다른 오염물질은 기상과 액상에 거의 존재하지않음을 보임으로써 지하수 오염 가능성을 현저하게 감소시켰다. 본 연구의 결과는 위해성이 큰 오염물질과 복원 처리를 토양 내 오염물질 잔류 농도 간에 관련이있음을 보였으며 또한 유류오염 토양의 위해성 평가과정에서 NAPL과 고상을 고려하는 일의 중요성도 나타내었다.

The purpose of this study was to predict environmental distribution of anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene and phenanthrene in a four phase biopile system - air, water, soil and non aqueous phase liquid (NAPL) phase using level I fugacity model. Soil samples used for this study were collected from three sites in the United Kingdom which were historically contaminated with petroleum hydrocarbons. The level I fugacities (f) for the five contaminants were markedly different, however, the fugacities of each contaminant in three soil samples did not show significant difference. NAPL and soil were the dominant phases for all five contaminants. Results of this study indicated that difference in percentage of organic carbon strongly influenced the partitioning behavior of the cntaminants. The presence of benzene calls for an urgent need for risk-based management of air and water phase. Whereas insignificant amount of chemicals leached in the water phase for other organic contaminants showing greatly reduced potential of groundwater contamination. Furthermore, this study helped us to confirm the association of risk critical contaminants with the residual saturation in treated soils. They also can be used to emphasize the importance of accounting for the partitioning behavior of both NAPL and soil phases in the process of the risk assessment of the sites contaminated with petroleum hydrocarbons.

키워드

참고문헌

  1. Allan, I.J., K.T. Semple, R. Hare and B.J. Reid. 2006. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ. Pollut. 144:562-571. https://doi.org/10.1016/j.envpol.2006.01.026
  2. Alexander, M. 2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34:4259-4265. https://doi.org/10.1021/es001069+
  3. Battelle, NFESC. 1996. Biopile design and construction manual. Prepared by Battelle Environmental Restoration Department for NFESC, Port Hueneme, California, USA.
  4. Boyd, S.A. and S. Sun. 1990. Residual petroleum and polychlorinated oils as sorptive phases for organic contaminants in soils. Environ. Sci. Technol. 24:142-144. https://doi.org/10.1021/es00071a018
  5. Brassington, K.J., R.L. Hough, G.I. Paton, K.T. Semple, G. Risdon, J. Crossley, G. Lethbridge, I. Hay, K. Askari and S.J.T. Pollard. 2007. Weathered hydrocarbons: a risk management primer. Crit. Rev. Env. Sci. Technol. 37:199-232. https://doi.org/10.1080/10643380600819625
  6. Doick, K.J., N.M. Dew and K.T. Semple. 2005. Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ. Sci. Technol. 39:8858-8864. https://doi.org/10.1021/es0507463
  7. Environment Agency. 2005. The UK approach for evaluating human health risks from petroleum hydrocarbons in soils. Science report P5-080/TR3. Environment Agency, Almondsbury, Bristol.
  8. Huesemann, M.H. 1997. Incomplete hydrocarbon biodegradation in contaminated soils: limitations in bioavailability or inherent recalcitrance? Biorem. J. 1:27-39. https://doi.org/10.1080/10889869709351315
  9. Huesemann, M.H., T.S. Hausmann and T.J. Fortman. 2003. Assessment of bioavailaibility limitations during slurry bioremediation of petroleum hydrocarbons in aged soils. Environ. Tox. Chem. 22:2853-5860. https://doi.org/10.1897/02-611
  10. Huesemann, M.H., T.S. Hausmann and T.J. Fortman. 2004. Does bioavailability limit biodegradability? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegrad. 15:261-274. https://doi.org/10.1023/B:BIOD.0000042996.03551.f4
  11. Huesemann, M.H., T.S. Hausmann and T.J. Fortman. 2005. Leaching of BTEX from aged crude oil contaminated model soils: experimental and modelling results. Soil Sediment Contam. 14:545-558. https://doi.org/10.1080/15320380500263733
  12. Kjeldsen, P. and T.H. Christensen. 2001. A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA. Waste Manage. Res. 19:201-216. https://doi.org/10.1177/0734242X0101900303
  13. Mackay, D. 2001. Multimedia environmental models: the fugacity approach, second ed. Lewis Publishers, MI.
  14. Mills, W.J., E.R. Bennett, C.E. Schmidt and L.J. Thibodeaux. 2004. Obtaining quantitative vapour emissions estimates of polychlorinated biphenyls and other semi-volatile organic compounds from contaminated sites. Environ. Toxicol. Chem. 23:2457-2464. https://doi.org/10.1897/03-384
  15. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 973-977. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed) Methods of soil analysis part 3: chemical methods. SSSA Book series 5. SSSA and ASA, Madison, WI.
  16. Nieman, K.C. 2003. How to use a level I fugacity model to estimate contaminant partitioning in the subsurface. Clearinghouse.
  17. Pignatello, J.J. and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30:1-11. https://doi.org/10.1021/es940683g
  18. Pollard, S.J.T., R.E. Hoffmann and S.E. Hrudey. 1993. Screening of risk management options for abandoned wood-preserving plant sites in Alberta, Canada. Can. J. Civil Eng. 20:787-800. https://doi.org/10.1139/l93-104
  19. Pollard, S.J.T., S.E. Hrudey, B.J. Fuhr, R.F. Alex, L.R. Holloway and F. Tosto. 1992. Hydrocarbon wastes at petroleum and creosote contaminated sites: rapid characterisation of class components by thin layer chromatography with flame ionization detection. Environ. Sci. Technol. 26:2528-2534. https://doi.org/10.1021/es00036a029
  20. Rowell, D.L. 1997. Soil Science: Methods and Applications. Longman Singapore Publishers (Pte) Ltd. Singapore.
  21. Shafi, S., A. Sweetman, R.L. Hough, R. Smith, A. Rosevear and S.J.T. Pollard. 2006. Evaluating fugacity models for trace components in landfill gas. Environ. Pollut. 144:1013-1023. https://doi.org/10.1016/j.envpol.2006.01.048
  22. She, Y., B. Sleep and D. Mackay. 1995. A fugacity model for soil vapour extraction. J. Soil Contam. 4:227-242. https://doi.org/10.1080/15320389509383496
  23. ThermoRetec Consulting Corporation. 2000. Environmentally acceptable endpoints for hydrocarbon-contaminated soils. Prepared for petroleum environmental research forum project 94- 06 (ResearchArea1).
  24. Thomas, G.W. 1996. Soil pH and soil acidity. p. 475-490. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed) Methods of soil analysis part 3: chemical methods. SSSA Book series 5. SSSA and ASA, Madison, WI.
  25. Topp, G.C. and T. Ferre. 2002. The soil solution phase. p. 417-424. In: J.H. Dane and G.C. Topp (ed.) Methods of soil analysis part 4: physical methods. SSSA Book series 5. SSSA, Madison, WI.
  26. United States Environmental Protection Agency. 1991. A scientific evaluation of the mobility and degradability of organic contaminants in subsurface environments. Office of Research and Development Report EPA/600/2-91/053. 353pp.
  27. United States Environmental Protection Agency. 1996. Test Methods for Evaluating Solid Waste. Volumes 1A through 1C. (SW-846) Method 8015B. Third Edition. Update III. OSWER. Washington, DC. December.
  28. Walter, T., H.J. Ederer, C. Forst and L. Stieglitz. 2000. Sorption of selected polycyclic aromatic hydrocarbons on soils in oilcontaminated systems. Chemosphere 41:387-397. https://doi.org/10.1016/S0045-6535(99)00328-8
  29. Westlake, D.W.S., A. Jobson, R. Phillippe and F.D. Cook. 1974. Biodegradability and crude oil composition. Can J. Microbiol. 20:915-928. https://doi.org/10.1139/m74-141
  30. Woolgar, P.J. 1997. The influence of contaminant source materials on the aqueous dissolution of polycyclic aromatic hydrocarbons. Ph.D. Thesis, Institute of Environmental and Natural Sciences, Lancaster University, UK. 330pp.
  31. Woolgar, P and K. Jones. 1999. Studies on the dissolution of polycyclic aromatic hydrocarbons from contaminated materials using a novel dialysis tubing experimental method. Environ. Sci. Technol. 33:2118-26. https://doi.org/10.1021/es980638z
  32. Zemanek, M.G., S.J.T. Pollard, S.L. Kenefick and S.E. Hrudey. 1997a. Multiphase partitioning and co solvent effects for polynuclear aromatic hydrocarbons (PAH) in authentic petroleumand creosote-contaminated soils. Environ. Pollut. 98:239-252. https://doi.org/10.1016/S0269-7491(97)00126-7
  33. Zemanek, M.G., S.J.T. Pollard, S.L. Kenefick and S.E. Hrudey. 1997b. Toxicity and mutagenicity of component classes isolated from soils at petroleum- and creosote-contaminated sites. J. Air Waste Manage. Assoc. 47:1250-1258. https://doi.org/10.1080/10473289.1997.10464076