High Temperature Corrosion in Carbon-Rich Gases

  • Young, D.J. (School of Materials Science and Engineering, University of New South Wales UNSW)
  • Published : 2008.04.01

Abstract

Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.

Keywords

References

  1. H. E. McCoy, Corrosion, 21, 84 (1965) https://doi.org/10.5006/0010-9312-21.3.84
  2. F. S. Pettit, J. A. Goebel, G. W. Goward, Corros. Sci., 9, 903 (1969) https://doi.org/10.1016/S0010-938X(69)80109-5
  3. G. H. Meier, W. C. Coons, R. A. Perkins, Oxid. Met., 17, 235 (1982) https://doi.org/10.1007/BF00738385
  4. J. A. Colwell and R. A. Rapp, Met. Trans. A 17A, 1065 (1986)
  5. X. G. Zheng, D. J. Young, Mater, Sci. Forum 251-4, 567 (1997) https://doi.org/10.4028/www.scientific.net/MSF.251-254.567
  6. P. R. S. Jackson, D. J. Young, and D. L. Trimm, J. Mater. Sci., 21, 4376 (1986) https://doi.org/10.1007/BF01106559
  7. J. Perkins and A. Goldberg, Oxid. Met., 11, 23 (1977) https://doi.org/10.1007/BF00611601
  8. D. J. Young and S. Watson, Oxid. Met., 44, 239 (1955) https://doi.org/10.1007/BF01046729
  9. G. B. Gibbs, Oxid. Met., 7, 173 (1973) https://doi.org/10.1007/BF00610578
  10. R. F. Hochman, Proc. 4th Int. Cong. Met. Corrosion, p. 258, NACE, Houston (1972)
  11. J. C. Nava Paz and H. J. Grabke, Oxid. Met., 39, 437 (1993) https://doi.org/10.1007/BF00664665
  12. M. Hansel, C. Boddington, D.J. Young, Corros. Sci., 45, 967 (2003) https://doi.org/10.1016/S0010-938X(02)00182-8
  13. C. Wagner, Z. Electrochem., 63, 772 (1959)
  14. C. H. Toh, P. R. Munroe, D. J. Young, K. Foger, Mater. High Temp. 20, 129 (2003) https://doi.org/10.3184/096034003782748982
  15. C. H. Toh, P. R. Munroe, D. J. Young, Oxid. Met., 28 (2000)
  16. C. S. Giggins and F. S. Pettit, Oxid. Metals, 14, 363 (1980) https://doi.org/10.1007/BF00603609
  17. H. J. Grabke, K. Ohla, J. Peters, I. Wolf, Werkst. Korros., 34, 495 (1983) https://doi.org/10.1002/maco.19830341002
  18. R. T. K. Baker, M. A. Barker, P. S. Harris, F. S. Yeates, R. J. Waite, J. Catal., 26, 51 (1972) https://doi.org/10.1016/0021-9517(72)90032-2
  19. R. Schneider, E. Pippel, J. Woltersadorf, S. Strauss, H. J. Grabke, Mater. Technol., 68, 326 (1997)
  20. T. Wada, H. Weda, I. F. Elliott, J. Chipman, Met. Trans., 2, 2199 (1971) https://doi.org/10.1007/BF02917551
  21. S. K. Bose, H. J. Grabke, Z. Metall., 69, 8 (1978)
  22. J. C. Nava Paz and H. J. Grabke, Oxid. Met., 39, 437 (1993) https://doi.org/10.1007/BF00664665
  23. C. M. Chun, J. D. Mumford and T. A. Ramanarayanan, J. Electrochem. Soc., 147, 3680 (2000) https://doi.org/10.1149/1.1393958
  24. J. Zhang and D. J. Young, Corros. Sci., 49, 1496 (2007) https://doi.org/10.1016/j.corsci.2006.08.008
  25. S. Leistikow, Mater. Chem., 1, 189 (1976) https://doi.org/10.1016/0390-6035(76)90013-4
  26. H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, S. Strauss, Mater Corros., 47, 495 (1996) https://doi.org/10.1002/maco.19960470904
  27. H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, B. Ekter, M. Lucas, D. Monceau, Steel Research, 68, 179 (1997) https://doi.org/10.1002/srin.199700560
  28. H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, J. Klower, D. C. Agarwal, Mat. Performance, 27, 7 (1998)