Abstract
We analyze the stability property of a class of nonlinear time-delay systems with time-varying delays. We present a time-delay independent sufficient condition for the global asymptotic stability. In order to prove the sufficient condition, we exploit the inherent property of the considered systems instead of applying the Krasovskii or Razumikhin stability theory that may cause the mathematical difficulty of analysis. We prove the sufficient condition by constructing two sequences that represent the lower and upper bound variations of system state in time, and showing the two sequences converge to an identical point, which is the equilibrium point of the system. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.