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RESIDUAL EMPIRICAL PROCESS FOR DIFFUSION
PROCESSES

SANGYEOL LEE AND IN-SUK WEE

ABSTRACT. In this paper, we study the asymptotic behavior of the resid-
ual empirical process from diffusion processes. For this task, adopting
the discrete sampling scheme as in Florens-Zmirou [9], we calculate the
residuals and construct the residual empirical process. It is shown that
the residual empirical process converges weakly to a Brownian bridge.

1. Introduction

The diffusion process has long been popular in analyzing random phenom-
ena occurring in a variety of fields such as finance, engineering, physical and
medical sciences. During the past decades, the theory for diffusion processes
has been enriched in a remarkable way, and the diffusion process has become a
representative keyword for stochastic analysis, especially in stochastic finance.
See, for instance, Karatzas and Shreve [11] and Shiryayev [26]. Despite of the
importance, there has been a tendency that statistical inferences for diffusion
models have not drawn much attention from researchers as classical statistical
problems. However, nowadays it is becoming a core area of statistics, and rel-
evant fundamental results are available from the literature: see the books by
Prakasa Rao [23], Lipster and Shiryayev [1] and Kutoyants [15].

From experiences in empirical analysis of financial time series data, practi-
tioners notice that time series data is not well fitted by diffusion models. For
this reason, they introduced other class of stochastic models like jump diffu-
sion processes and Lévy processes. See Sato (24|, Barndorff-Nielsen, Mikosch
and Resnick [1], Schoutens [23], and Cont and Tankov [6]. Also, see Chan [5],
Eberlin, and Raible (8], and Hong and Wee [10]. These models are now widely
accepted as a promising alternative to diffusion models for modeling financial
time series. Meanwhile, it is well known that time series often suffer from struc-
tural changes in underlying models owing to changes of monetary policy and

critical social events (see, for instance, Lee, Ha, Na, and Na [16], Lee and Na
[17], Lee, Toktsu, and Maekawa [20], and Lee, Nishiyama, and Yoshida [18]).
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Hence, it is somewhat natural to ask whether or not the diffusion models are
suitable for modeling time series data.

In this paper, motivated by the issue mentioned above, we consider the
goodness of fit test problem for diffusion models. For this task, we study the
empirical process from diffusion processes since it is one of the most popular
tools to check the validity of proposed statistical models (see Thode [28] for
the Gauusian goodness of fit test), and provides rich statistical theories. For
a general review of the empirical process, we refer to Durbin [7] and the text-
books, such as Shorack and Wellner [27], van der Vaart and Wellner [30], and
van de Geer [29].

In handling the continuous time stochastic process for statistical inference,
one can choose one of the two approaches: the one is to use all continuous
sample path as in Kutoyants [15] and the other is to use the sampling scheme
as in Flrores-Zmirou [9], Yoshida [31] and Kessler [12]. Here, we adopt the latter
since it makes the situation much more tractable in defining the residuals and
investigating the asymptotic behavior of the residual empirical process. The
idea to employ such a residual empirical process is based on the fact that if
the data is generated from a pure diffusion model, the residuals obtained from
the sampled observations should behave like normal r.v.’s and thus, through
the normality test one can judge the well-fitness of the diffusion model. The
residual empirical process has been studied in time series models by many
authors. We refer to Boldin ([3], [4]), Kreiss [14], Ling {22], Lee and Wei [21],
Lee and Taniguch [19], Koul [13] and the papers cited therein. However, to
our knowledge, there are no literatures handling the residual empirical process
in diffusion models, which, therefore, deserves special attention considering its
wide applicability.

In Section 2, we state the main result. It is shown that the residual empirical
process converges weakly to a Brownian bridge under regularity conditions. In
Section 3, we provide the proof for the main theorem.

2. Main result

Let us consider the stochastic differential equation
(21) dXt = G,(Xt,G)dt + O'th, XO = X, t 2 0,

where @ is a p-dimensional unknown parameter, o is a constant, a is a real
valued function, and {Wy;t > 0} is a standard Wiener process. This model has
been studied by Florens-Zmirou [9] and the result is summarized in Prakasa
Rao [23], pages 143-144 and 153-158. For instance, the model in (2.1) includes
the Ornstein-Uhlenbeck process

dXt = (le — ﬂ,Xt)dt + O'th.

We assume that the following conditions hold.
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(A1) There exist constants C,m > 0 such that for any 6, z,y,

la(x;0) —a(y; 0)] < Clr—yl,
sup |[la(z;0)]] < C(1+ [z|™),
8' €Ny
sup |la(z:6)]] < CO+ |z|™),
8’ c Ny

where a = 0a /06, & = 8a?/06*, and Ny is an open neighborhood of 4.
(A2) sup, E|X:|" < oc for all v > 0.
The issue here is to test the adequacy of the model in (1) for a give time series

data. Suppose that {X;} is observed at discrete times ¢; = th,,t = 1,...,n,
where {h, } is a sequence of positive real numbers such that i, — 0 and nh —)

00. Let §,, be an estimator of 8 such that v/7h., 9 —6) is asymptotically normal.
A sufficient condition for the normality (,ondltlon can be found in Florens-
Zmirou [9] and Kessler [12]. We implicitly assume those without specification.
Besides, we impose the condition on the sequence {h, }:

(A3) nh?2 — 0 and (nhy,)"/?/logn — co as n — .

By noticing
(2.2)

t:
Xti _Xt,;_l - hna(};ia_1 ; 9) + / ((1(}&’3; 9) ’"a’(){ta—l 3 9))d8 + O-(Wti _Wti—l)
t, 1

~ hpa(Xs_,;60) + o hyrs,

where r; are iid standard normal r.v.’s. we define the residuals

(23) T = {‘Yff o )Cts—1 — hy, (‘Y 1 )}/6’” V hn,
where

‘ 1 n _

A2 r - - . 2
(2:4) On = e D (Kt = Xoy = hna(Xe_1360))%,

1=

which is a consistent estimator of 0? (¢f. Flores-Zmirou [9]). The residual
empirical process is then defined by

Ty

(2.5) Y, (z) \/n_ Z{] 7 < z)—®(z2)}, z €R,

where nj is the largest integer that does not exceed nh,,. The main goal of this
section is to figure out the limniting distribution of Y,,.
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Put
o Wti - Wt£—1
"7m - \/H ’
t;
Ani = {a(Xs;0) — a(Xe,_,;0)}ds,
ti-1
dni = a(Xy,_,;0n) — a(Xy,_,;0).

Note that A,; can be viewed as a model bias in the regression model in (2.1).
By (A1),

i
ElA < C E|X, - X¢,_,|ds

li—1

(2.6)

ti 3
<C | EYV*|X,-X,,['ds = O(t), C >0,

ti—1

where we have used Lemma 3.4.2 of Prakara Rao [23], p.156. Similarly, we can
show that for every integer &k > 1,

(2.7) E|A,;|** = O(h2F+1).
Write that Y, (z) = I,(z) + [I,(z) + I1],(z), where

I(z) = -——%—f;i{f(??m < 2) - 3(2)),

IL(z) = \/_ ; { (——:l: -~ (:/% - \/:_ndni) - ‘I’(ﬂ7)} ,
I, (z) = o Z{ (nm Z—”x - UA”;; - ‘/f"—‘dm)
% (‘;—% _ :/% _ \/:_”'_dni) + &(2) — (0 < a:)}.

Since by (A1)-(A3) and the mean value theorem,
1 T
Vn(6: —o?) = —=» (3, - 1?4+ o0p(1),
(0% =) = = D00 = 1o+ or ()

we can write that

() = — n_ (ﬁ _ 1) 26(z) + ;um;(m),
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where
,__1 TH A .
IIy(z) = —— ) —F—=¢(2),
/Tl 1 2 hn
~1 <V,
Ilo(z) = —= D~ dnid(x),

I

I1,3(x) 2\}%; (Of/_ ) (€nilz

687

where £,;(z) is a number lying between x and -ﬂ—m — \/— + b =dn;. Note that

by (2.6) and (A.3),
(2.8) sup [ Ini ()| = op(1).

Using Taylor’s theorem, we can write d,; = d_ 1) + d(g) with
(1 A 1

d\Y) = a(Xs,_,;0)(8, —6) and d'Z) = Z(6, - 8) &(X,,_,;6%)(6,

2

where 7. is an intermediate point of 6, and 6. Since by (A1),

Vinll6n — 6]]* max sup [|a(Xe, s 6]l = or(1),

1<i<ny ' €Ny

we have
(2.9) sup ! :Yh: (2)) = op(l).
* Tt =1
Also,
1 ny
Z r) = op(l).
h -«
=1
Hence,
(2.10) Sup |1 In2(2)| = op(1).
In a similar fashion, we can see that
(2.11) sup [ [3(z)| = op(1).

Combining (2.8), (2.10), (2.11), and the fact that
(2.12) sup [I11,(z)] = op(1),

of which proof is in Section 3, we have the following.

- 0),
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Theorem 2.1. Assume that (A1) — (A3) hold. Then, as n — oo,

Yo(z) =

1 h
— — I ni ST o + &n ’
T 2 {10 $2) = #(0)) + )
where sup, |&,(z)| = op(1). Thus, Y,(®~1(u)) converges weakly to a Brownian
bridge W°(u).

Remark. One can ask whether n, in Y, can be replaced by the sample size
n since it is always desired to use the whole observations. According to our
analysis, the answer is negative since the model bias terms A,; cannot be
regarded negligible uniformly. Recall that h, should not be so small since nh,
must go to infinity, and so there is a limit to reducing the model bias in view
of (2.6). Using ny may not cause a serious trouble in actual practice as far as a
large number of observations are utilized. If the sample size is small, the whole
statistical inference may not be reliable since the 8,, itself is unreliable.

Usually, the estimator of scale parameter affects the limiting distribution as
seen in Durbin [7]. In our case, however, it disappears as we saw in Theorem
2.1. This happens since the 62 is \/n-consistent unlike the estimator of 6,
and behaves as if it were a super efficient estimator since only n; number of
observations are involved in the residual empirical process.

One can utilize the above result to perform a goodness of fit test. For
example, one can use the Kolmogorov-Smirnov test and Cramer-von Mises test
since by the continuous mapping theorem,

KS,:= sup |Yo(® '(u)| = sup |W°(u)
1<u<l 0<u<1

and

CV, .—/ Y, (P Izdu—>/ |W°(u)|?du in distribution.

We reject the null hypothesis Ho: {X;} follows the diffusion model in (2.1) if
K S, and CV,, are large.

Here, we only considered the case that the dispersion part is a constant.
In fact, one may consider the diffusion model with more general dispersion
coefficients, say,

(2.13) dX: = a(X;0)dt + b( X, : 0)dW;.

This model is used widely in financial time series analysis, and becomes Feller’s
square model when a(X;;0) = a(f — X:) and b(X;;0) = 0/ X;. Though one
can easily guess that our result will extend to this model, a careful analysis is
needed according to the result in Lee and Taniguch [19] which shows that the
varying dispersion components in ARCH models affect the limiting distribution
of the residual empirical process. We leave the task of extension as a future
study.
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3. Proof

In this section, we prove sup, [[I1,(r)| = op(1). Observe that by the mono-
tonicity of the indicator function,

An / hn : Ani
I(”nz S g_'T + \/7 ni — iBdX { f i(ri)l + l I })
o o 1<i<np | O aVh,

An Ani }*n
<1 (nm- <7np - - —‘/—_’—-dm)
o avh, o
ATL }n Anl
s I(ﬂm < Onp VI L + max {f a4 2 })
g o 1<i<np o \/_

Also, note that from (2.7),
(3.1) E{v/n max |A.;|}' = O0((nhi)?) = o(1).

1<i<ny

From (2.9), (3.1) and Taylor’s theorem, we have that

1 oh (Gn Ani \/En )
— ¢ —x — + -d
\/ﬁh zzl o O‘\/En g

n th
(" L dif)) + pn(2)
1=1
1 o 0n  Vhy (1) Vin 2 Al N
fhE;@( R e R T R C

where sup, |pn(2)] = op(1) and sup, |pn(x)] = op(1). In view of this and the
following two facts:

sup

T2 2 {0 <4 600 = 00+ €00) = 8(a) = Tms <) }| = 0p()
=1

for any double array of r.v.’s {£,,;} with \/ﬁmaxlgign 1€nil = op(1) (cf. Lemma,
2.2 of Lee and Wei [21]), and

~

;}—52{ (s < 721 - (?m)w(:r)-f(nmga:)}\wp(l)

(cf. Billingsley [2], p. 106), we can see that (2.12) follows if

sup

(3.2) sup |I11,(z)| = op(1),

where

—~— 1 <& B hn
[1(z) = == > {I(T}n; e ii,‘,-’) - @(m ‘/; ) + ®(x) — I (1 < :c)}.
=
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Let z; be such that —co = zo < -+ < zn, = oo and ®(z;) = §-,j =
0,...,N,, where N,, = n°. Since

1 &
lir?gjf{\fn mjﬁ?clg:::jﬂ VTh ;{I(n"i : xj) ) (I)(xj) F @)= s 5 2 = orlL)
(3.2) follows if
Il —
(3.3)  max [T Injl = op(1),
where
, 1 & Vhn, Vhy
IIInj = \—/_n—h; {I(T)m' S Z + —;—-—dsi)) - @(:L‘j + o di(qli)) + ‘I’(.’L‘j) - I('r)m S :EJ)}
Since v/n;, (0, — 6) = Op(1), (4.3) holds if for any K > 0,
1 &

sup max
Is|| <K 1ST<Nn

{I(nns < i +n7 "% a(Xy,_,;6))
1

vV, P

~®(z; +n7128'a(Xe,_150)) + B(z5) = I(0ni < 7))}

(3.4)
— Op(l).

Partitioning S, = {y € R?;||ly|l < K} by vertices (y1u,,---,¥Ypy,) With
Yo, = —K + g%'ﬁ’—,vq = 1,...,n?%, one can obtain the disjoint rectangles
Q1,--.,Qr, with Qi NSy # ¢ and S, C U™, @, where 7, = O(n?). Then,

one can readily show that (4.4) holds if

W,: = max max
1<I<r, 1<5<N,

1 & N
\/n—h E;{I(nm S 373 + n 1/27.1:?1)

~®(zj + 0 ?u) + @(z;) ~ I(na: < 25)}| = op(1),

where

uj; = sup s'a(Xti_l;O) and u;; = inf s!('z(Xti_l;Q).
sEQ s€

Here, we only prove the 'u,;'l‘ case. Put
eni = I(Nn,; < x; + n"‘l/zujl') - ®(z; +n72ul) + ®(x;) — I(nn; < x5).

In view of the fact that > | [u}j| = Op(n) for any é > 0, there exists B > 0
such that P(V,,) > 1 — 4§, where V,, = (318, |u;| < Bny). Then if we put

1
!

€ni = eni[(z |U;c|_l| < Bny),

k=1
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{e. ., Fn} forms a sequence of martingale differences where Fn, = 0(n,,. ..,
T, ). Note that

Nh ng )
Y E((en:)*|Fn,) < n YPKY i) [uf] < Bna)
i=1 k=1

1=1

< B'\nhn, B >0.

Applying Freedman’s inequality for martingales, we obtain that for any A >
0,

PUY. el > W) < 2exp{ = (112w /(B Vi, + (2/3Av) |
i=1

= Oe V™),

where & is a positive constant. Since P(ec,; # e . forsomei=1,...,n4,V,) =
0, we have

P(Wy,>2A) < PV, > AV, + P(V))

T N n
"~ — 1

< ZZP m—Zem >AMV, | +46
[=1 j=1 \/ﬁ 1=
Th f\"n 1 n

< ZZP — efm >A|+46
(=1 j=1 \/T_L =1

= o(l)+20

by the second condition of (A3). Since § is arbitrarily chosen, we have

lim P(W, > A) = 0.

n—2x
This completes the proof. O
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