References
- H. Brandt and O. Intrau, Tabellen reduzierter positiver ternarer quadratischer Formen, Abh. Sachs. Akad. Wiss. Math.-Nat. Kl. 45 (1958), no. 4, 261 pp
- W. K. Chan and B.-K. Oh, Finiteness theorems for positive definite n-regular quadratic forms, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2385-2396 https://doi.org/10.1090/S0002-9947-03-03262-8
- L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. (2) 28 (1926/27), no. 1-4, 333-341 https://doi.org/10.2307/1968378
- A. G. Earnest, The representation of binary quadratic forms by positive definite quaternary quadratic forms, Trans. Amer. Math. Soc. 345 (1994), no. 2, 853-863 https://doi.org/10.2307/2155002
- W. C. Jagy, I. Kaplansky, and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332-341 https://doi.org/10.1112/S002557930001264X
- B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), no. 1, 165-191 https://doi.org/10.1007/BF02547347
- A. Khosravani, Universal quadratic and Hermitian forms, Integral quadratic forms and lattices (Seoul, 1998), 43-49, Contemp. Math., 249, Amer. Math. Soc., Providence, RI, 1999
- Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106. Cambridge University Press, Cambridge, 1993
- G. Nipp, Quaternary Quadratic Forms, Springer-Verlag, New York, 1991
- O. T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878 https://doi.org/10.2307/2372837
- O. T. O'Meara, Introduction to Quadratic Forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg 1963
- B. L. van derWaerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309 https://doi.org/10.1007/BF02392364
- G. L. Watson, Some problems in the theory of numbers, Ph. D. Thesis, University of London, 1953
- G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104-110 https://doi.org/10.1112/S0025579300000589
- G. L. Watson, Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), 577-587 https://doi.org/10.1112/plms/s3-12.1.577
- G. L. Watson, Regular positive ternary quadratic forms, J. London Math. Soc. (2) 13 (1976), no. 1, 97-102 https://doi.org/10.1112/jlms/s2-13.1.97