DOI QR코드

DOI QR Code

PRIMITIVE EVEN 2-REGULAR POSITIVE QUATERNARY QUADRATIC FORMS

  • Published : 2008.05.31

Abstract

In this paper, we provide a complete list of 177 equivalence classes of primitive even 2-regular quaternary positive definite quadratic forms and their discriminants. All of them have class number 1.

Keywords

References

  1. H. Brandt and O. Intrau, Tabellen reduzierter positiver ternarer quadratischer Formen, Abh. Sachs. Akad. Wiss. Math.-Nat. Kl. 45 (1958), no. 4, 261 pp
  2. W. K. Chan and B.-K. Oh, Finiteness theorems for positive definite n-regular quadratic forms, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2385-2396 https://doi.org/10.1090/S0002-9947-03-03262-8
  3. L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. (2) 28 (1926/27), no. 1-4, 333-341 https://doi.org/10.2307/1968378
  4. A. G. Earnest, The representation of binary quadratic forms by positive definite quaternary quadratic forms, Trans. Amer. Math. Soc. 345 (1994), no. 2, 853-863 https://doi.org/10.2307/2155002
  5. W. C. Jagy, I. Kaplansky, and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332-341 https://doi.org/10.1112/S002557930001264X
  6. B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), no. 1, 165-191 https://doi.org/10.1007/BF02547347
  7. A. Khosravani, Universal quadratic and Hermitian forms, Integral quadratic forms and lattices (Seoul, 1998), 43-49, Contemp. Math., 249, Amer. Math. Soc., Providence, RI, 1999
  8. Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106. Cambridge University Press, Cambridge, 1993
  9. G. Nipp, Quaternary Quadratic Forms, Springer-Verlag, New York, 1991
  10. O. T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878 https://doi.org/10.2307/2372837
  11. O. T. O'Meara, Introduction to Quadratic Forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gottingen-Heidelberg 1963
  12. B. L. van derWaerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309 https://doi.org/10.1007/BF02392364
  13. G. L. Watson, Some problems in the theory of numbers, Ph. D. Thesis, University of London, 1953
  14. G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104-110 https://doi.org/10.1112/S0025579300000589
  15. G. L. Watson, Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), 577-587 https://doi.org/10.1112/plms/s3-12.1.577
  16. G. L. Watson, Regular positive ternary quadratic forms, J. London Math. Soc. (2) 13 (1976), no. 1, 97-102 https://doi.org/10.1112/jlms/s2-13.1.97