Hardware Design for Timing Synchronization of OFDM-Based WAVE Systems

OFDM 기반 WAVE 시스템의 시간동기 하드웨어 설계

  • 현트롱안 (경희대학교 전자전파공학과) ;
  • 김진상 (경희대학교 전자전파공학과) ;
  • 조원경 (경희대학교 전자전파공학과)
  • Published : 2008.04.30

Abstract

WAVE is a short-to-medium range communication standard that supports both public safety and private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments. The core technology of physical layer in WAVE is orthogonal frequency division multiplexing (OFDM), which is sensitive to timing synchronization error. Besides, minimizing the latency in communication link is an essential characteristic of WAVE system. In this paper, a robust, low-complexity and small-latency timing synchronization algorithm suitable for WAVE system and its efficient hardware architecture are proposed. The comparison between proposed algorithm and other algorithms in terms of computational complexity and latency has shown the advantage of the proposed algorithm. The proposed architecture does not require RAM (Random Access Memory) which can affect the pipe lining ability and high speed operation of the hardware implementation. Synchronization error rate (SER) evaluation using both Matlab and FPGA implementation shows that the proposed algorithm exhibits a good performance over the existing algorithms.

5.9 GHz WAVE(Wireless Access for the Vehicular Environment)는 노변-차량, 차량-차량 통신을 통하여 공공안전과 개인통신을 지원하기 위한 중단거리 무선통신 방식이다. WAVE 물리계층의 핵심기술은 시간동기오류에 민감한 OFDM 방식이며 통신링크상의 지연을 최소화하여 고속의 차량통신 환경을 제공하는 것이 매우 중요하다. 본 논문에서는 오류에 강인하고 복잡도가 낮고 지연시간이 적은 WAVE 시스템 응용을 위한 시간동기 알고리즘과 하드웨어 구조를 제안한다. 제안된 알고리즘은 기존의 알고리즘에 비교하여 연산의 복잡도와 지연시간이 감소되며 하드웨어 구조는 파이프라인 구조와 고속 동작에 영향을 줄 수 있는 RAM이 필요하지 않다는 장점이 있다. Matlab과 FPGA를 이용한 하드웨어 구현을 통한 동기화 오차율(SER) 실험결과, 제안된 알고리즘이 고속 이동환경에 대해 강인하고 효율적이라는 확인하였다.

Keywords

References

  1. IEEE P802.11p/D1.0, Wireless LAN Medium Access Control (MAC) and Physical PLayer (PHY) Specification - Amendment3: Wireless Access in Vehicular Environments (WAVE)
  2. L. Hanzo, M. Munster, B.J Choi and T. Keller, OFDM and MC-CDMA for Broad band Multi-User Communications, WLAN sand Broadcasting, Wiley, 2003
  3. Shinsuke Hara, Ramjee Prasad, Muticarrier Technologies for 4G Mobile Communications, Artech, 2003
  4. Joint Technical Committee on Wireless Access, Technical Report on RF channel characterization and System Deployment Modeling, Paper No. JTC(AIR) 1994.09. 23-065R6, Sep. 23, 1994
  5. T. M. Schmidl and D. C. Cox, 'Robust frequency and timing synchronization for OFDM,' IEEE Transaction on Communications, , vol. 45, pp. 1613-1621, Dec. 1997 https://doi.org/10.1109/26.650240
  6. J.J. van de Beek, M. Sandell, 'ML Estimation of Time and Frequency Offset in OFDM Systems,' IEEE Transactions on signal processing, vol.45, pp.1800-1805, July 1997 https://doi.org/10.1109/78.599949
  7. S.Chang and B. Kelley, 'Time synchronization for OFDM-based WLAN systems,' IEEE Electronics Letters, vol.39, pp. 1024-1026, June 2003 https://doi.org/10.1049/el:20030628