DOI QR코드

DOI QR Code

구동 온도와 방전관 길이에 따른 ICP 광원의 전기.광학적 특성

Electro-Optical Characteristics of an ICP Light Source Depending on Driving Temperature and Length of Discharge Tube

  • 임연찬 (원광대학교 전자재료공학과) ;
  • 박대희 (원광대학교 전기전자 및 정보공학부)
  • 발행 : 2008.04.30

초록

본 실험은 구동 온도와 방전관의 길이에 따라 변화하는 ICP 광원의 전기 광학적 특성에 대해서 알아보았다. 광원의 전기 광학적 특성이 정상상태에 놓이는 구동 조건을 확인하기 위하여 시간에 따른 전력 소모와 광속의 변화를 측정하였다. 전력소모와 광속의 시간에 따른 변화를 측정한 결과를 통해서 볼 때 최초구동에서 70분이 경과한 이후부터 전력소모는 초기값에 대해 1.45[%], 광속은 0.36[%]의 안정성을 나타냈다. 항온챔버 내에서 온도를 5구간으로 나뉘어 변화하면서 구동 온도에 따른 ICP 광원의 광학적 특성을 알아보았다. 휘도는 온도의 상승과 비례적으로 증가하였으나 $46.7[^{\circ}C]$ 이상에서는 오히려 감소하는 결과를 얻을 수 있었다. 파센법칙과 함께 보일-샤를의 법칙을 통해 0.02[Torr]의 압력이 변화함에 따라 더 높은 방전전압이 요구되지만 충분한 전압이 안정기에서 공급되지 못하기 때문이라 판단된다. 이와 더불어 방전관 길이에 따라 광원에 인가되는 전력과 전류을 측정하였다.

We investigated the electro-optical characteristics of an ICP(Inductively Coupled Plasma) light source depending on driving temperature, and length of discharge tube. An electro-optical stability of a sample at operating was measured to see a steady state of a sample. In this results, we can see that a stability of power loss and luminous flux of a sample at operating of upper 70[min] was 1.45[%1 and 0.36[%]. We measured the optical characteristics of a sample in a thermal chamber operated at a specific temperature divided into 5 steps. While luminance increased with temperature increasing, the decrement of luminance a eared at u or $46.7[^{\circ}C]$. According to Parchen's and Boyle-Charles' law, we can speculate that a pressure was increased and a higher voltage was needed but a ballaster having a rating power can't support a higher voltage corresponding to a pressure change, 0.02[Torr] at $46.7[^{\circ}C]$. Moreover, we measured an a lied power and current of samples depending to a various length of a discharge tube.

키워드

참고문헌

  1. Brian Chapman, "Glow Discharge Processes-sputtering and plasma etching," JOHN WILEY & SONS, INC., pp.65-72, 1980
  2. R. O. Dendy, "Plasma Dynamics," CLARENDON PRESS.OXFORD, pp 8-18, 1990
  3. Miroslav sedlaček, "Electron Physics of Vacuum and Gaseous Devices", JOHN WILEY & SONS, INC., pp386-408, 1996
  4. J. R. Coaton and A. M. Marsden, "Lamps and Lighting", Fourth Edition, ANRNOLD, pp 1-336, 1997
  5. N. St. J. Braithwaite, "Introduction to gas discharges", Plasma Sources Sci. Technol., Vol. 9, pp 517-527, 2000 https://doi.org/10.1088/0963-0252/9/4/307
  6. Michio Takagaki, Takeshi Fukuyo, Shinchi Irisawa, "Mercury-Free Arc Tube for a Discharge", US Patent, No. 7,170,230,B2, 2007
  7. Walter P. Lalatovich, Sharon L. Ernest, Susan L. Callahan, Robert J. Karlotski and Janice T. Karlotski, "Mercury Free Discharge Lamp with Zinc Iodine", US Patent, No. 6,853,140,B2, 2005
  8. D.O. Wharmby, PhD, "Electrodeless lamps for lighting: a review", IEE proceedings. A, Science, measurement and technology, Vol.140 No.6, pp. 465-473, 1993
  9. J. Jonkers, M. Bakker and J. A. M. van der Mulleny "Absorption measurements on a low-pressure, inductively coupled, argon-mercury discharge for lighting purposes: 1. The gas temperature and argon metastable states density", Journal of physics D, applied physics, Vol.30 No.13, pp.1928-1933, 1997 https://doi.org/10.1088/0022-3727/30/13/015
  10. S. Kitsinelis, R. Devonshire, M. Jinno, K. H. Loo, D. A. Stone and R. C. Tozer,"Relative enhancement of near-UV emission from a pulsed low-pressure mercury discharge lamp, using a rare gas mixture", Journal of physics D, applied physics, Vol.37 No.12, pp.1630-1638, 2004 https://doi.org/10.1088/0022-3727/37/12/007
  11. E. Robert, H. Sarroukh, C. Cachoncinlle, R. Viladrosa, V. Hochet, S. Eddaoui, J. M. Pouvesle, "Spectroscopic and electrical study of rare-gas-based, hollow cathode luminescent discharges: Application to the life time and efficiency enhancement of mercury-free signs", Pure and applied chemistry. : Chimiepure et appliquee, Vol.77, No.2, pp.463-474, 2005 https://doi.org/10.1351/pac200577020463
  12. J. Kawanaka, A. Ogata, S. Kubodera, W. Sasaki, K. Kurosawa, "Improved output characteristics of a vacuum ultraviolet xenon gas jet discharge lamp with a magnetic field", Applied physics. B, Lasers and optics, Vol.65, No.4, pp.609-612, 1997 https://doi.org/10.1007/s003400050321
  13. H. Motomura, M. Jinno, M. Aono, "Measurement of metastable xenon density in mercury-free fluorescent lamps by IR laser absorption spectroscopy", 2002 Joint Conference of ACED & K-J Symposium on ED and HVE, Vol.1, pp67-70, Nov. 2002
  14. 대한 전기학회 광원기술연구회 공역, "광방사의 기초", 인터비젼, pp82-96, 2007
  15. D. O. Wharmby, "Electrodeless lamps for lighting: a review", IEE Proceedings, Vol.140A, pp465-473, 1993