Studies on the Application of the Spent Alkaline Manganese Batteries Powder as an Adsorbent for Nickel Ion

폐(廢)알칼리망간전지(電池) 분말(粉末)의 니켈 이온 흡착제(吸着劑)로서의 활용(活用)에 관한 연구(硏究)

  • Baek, Mi-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Sohn, Jeong-Soo (Mineral & Material Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 백미화 (이화여자대학교 환경공학과) ;
  • 김동수 (이화여자대학교 환경공학과) ;
  • 손정수 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.04.27

Abstract

The adsorption features of $Ni^{2+}$ onto spent alkaline manganese batteries powder have been investigated with the adsorbent dose, initial concentration of adsorbate and temperature as the experimental variables. The adsorption reaction of $Ni^{2+}$ ion followed the pseudo-second order rate model, and the adsorption rate constants($k_2$) decreased with increasing initial concentration of nickel ion. The equilibrium adsorption data were fitted to the Langmuir and Freundlich models. The Freundlich model represents the equilibrium data better than the Langmuir model in this initial adsorbate concentration range. As the temperature increased, the adsorbed amount of nickel ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results obtained along with temperatures, thermodynamic parameters such as ${\Delta}H^{\circ},\;{\Delta}G^{\circ},\;and\;{\Delta}S^{\circ}$ were calculated.

폐알칼리망간전지 분말에 대한 $Ni^{2+}$의 흡착 거동을 살펴보기 위하여 흡착제의 양, 홉착질의 초기농도 및 반응온도를 변화시켜 가며 그 특성을 조사하였다. $Ni^{2+}$의 흡착반응은 유사이차반응속도를 잘 따르는 것을 알 수 있었으며 $Ni^{2+}$의 초기농도가 증가함에 따라 유사이차반응속도상수($k_2$)는 감소하는 것으로 나타났다. 흡착평형을 표현하는데 널리 이용되는 Langmuir와 Freundlich 흡착 모델에 평형흡착 결과를 적용하였으며 Freundlich isotherm모델에 적합한 것으로 나타났다. 반응온도가 증가함에 따라 평형흡착량이 증가하여 흡착반응은 흡열반응의 양상을 보였으며 온도의 변화에 대한 실험결과로부터 ${\Delta}H^{\circ},\;{\Delta}G^{\circ}$ 그리고 ${\Delta}S^{\circ}$ 열역학적 변수를 도출하였다.

Keywords

References

  1. 손정수, 신선명, 양동효, 김태현, 2005: 폐전지의 재활용기술개발, 재료마당, 18(4), pp. 14-20
  2. 신선명, 강진구, 손정수, 양동효, 2006: 폐알칼리 망간전지로부터 황산을 이용한 유가금속 회수, 한국공업화학회지, 17(5), pp. 517-520
  3. 신선명, 손정수, 양동효, 안종관, 김수경, 손현태, 2004: 폐망간전지로부터 과산화수소를 환원 제로 이용한 망간 및 아연의 황산침출, 한국지구시스템공학회지, 41(4), pp. 285-290
  4. Freitas, M. B. J. G. and de Pietre, M. K. 2004: Electrochemical recycling of the zinc from spent $Zn-MnO_2$ batteries, Journal of Powder Sources, 128, pp. 343-349 https://doi.org/10.1016/j.jpowsour.2003.09.054
  5. De Michelis, I., Ferella, F., Karakaya, E., Beolchini, F. and Veglio, F., 2007: Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries, Journal of Powder Sources, 172, pp. 975-983 https://doi.org/10.1016/j.jpowsour.2007.04.092
  6. Freitas, M. B. J.G., Pegoretti, V. C. and Pietre, M. K. 2007: Recycling manganese from spent $Zn-MnO_2$ primary batteries, Journal of Powder Sources, 164, pp. 947-952 https://doi.org/10.1016/j.jpowsour.2006.10.050
  7. Veloso, L. R. S., Rodrigues, L. E. O. C., Ferreira, D. A., Magalhaes, F. S. and Mansur, M. B. 2005: Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries, Journal of Powder Sources, 152, pp. 295-302 https://doi.org/10.1016/j.jpowsour.2005.03.133
  8. Xi, G., Yang, L. and Lu, M. 2006: Study on preparation of nanocrystalline ferrites using spent alkaline Zn-Mn batteries, Materials Letters, 60, pp. 3582-3585 https://doi.org/10.1016/j.matlet.2006.03.064
  9. Xu, D., Zhou, X. and Wang, X., 2007: Adsorption and desorption of $Ni^{2+}$ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences, Applied Clay Science, in press
  10. Srivastava, V. C., Mall, I. D. and Mishra, I. M., 2006: Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash, Chemical Engineering Journal, 117, pp. 79-91 https://doi.org/10.1016/j.cej.2005.11.021
  11. Tahir, S. S. and Rauf, N., 2003: Thermodynamic studies of Ni() adsorption onto bentonite from aqueous solution, J. Chem. Thermodynamics, 35, pp. 2003-2010 https://doi.org/10.1016/S0021-9614(03)00153-8
  12. Mendes, F. D. and Martins, A. H., 2004: Selective sorption of nickel and cobalt from sulphate solutions using chelating resins, Int, J. Miner. Process, 74, pp. 359-371 https://doi.org/10.1016/j.minpro.2004.04.003
  13. Oliveira, E.A., Montanher, S.F., Andrade, A.D., Nobrega, J.A. and Rollemberg, M.C., 2005: Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran, Process Biochemistry, 40, pp. 3485-3490 https://doi.org/10.1016/j.procbio.2005.02.026
  14. Lagregren, S., 1898: About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl, 24, pp. 1-39
  15. Ho, Y. S. and McKay, G., 2000: The kinetics of sorption of divalent metal ions onto Sphagnum Moss Peat, Water Research, 34, pp. 735-742 https://doi.org/10.1016/S0043-1354(99)00232-8
  16. Oliveira, E. A., Montanher, S. F., Andrade, A. D., Nobrega, J. A. and Rollemberg, M. C., 2005: Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran, Process Biochemistry, 40, pp. 3485-3490 https://doi.org/10.1016/j.procbio.2005.02.026