Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine

달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出)

  • Mishra, Debaraj (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Dong-Jin (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Jong-Gwan (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ralph, David E. (AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch)
  • ;
  • 김동진 (한국지질자원연구원 자원활용소재연구부) ;
  • 안종관 (한국지질자원연구원 자원활용소재연구부) ;
  • Published : 2008.04.27

Abstract

Mixed acidophilic bacteria were approached for leaching of cobalt and lithium from wastes of lithium ion battery industries. The growth substrates for the mixed mesophilic bacteria are elemental sulfur and ferrous ion. Bioleaching of the metal was due to the protonic action of sulfate ion on the metals present in the waste. It was investigated that bioleaching of cobalt was faster than lithium. Bacterial action could leach out about 80 % of cobalt and 20 % of lithium from the solid wastes within 12 days of the experimental period. Higher solid/liquid ratio was found to be detrimental for bacterial growth due to the toxic nature of the metals. At high elemental sulfur concentration, the sulfur powder was observed to be in undissolved form and hence the leaching rate also decreased with increase of sulfur amount.

혼합 호산성 박테리아를 이용하여 리튬이온 밧데리 산업 폐기물로부터 코발트와 리튬의 침출을 연구하였다. 혼합 호산성 박테리아의 성장기질은 단체 황 및 2가 철이온으로 구성되어 있으며 미생물에 의한 금속의 침출은 폐기물에 존재하는 금속과 황산이온의 양자 반응 때문에 일어난다. 본 연구에서 12일간 미생물 침출반응시 고상 폐기물중 코발트의 80%, 리튬의 20%가 용해되었으며 고액비가 높을수록 금속의 독성으로 인하여 미생물의 성장은 억제된다. 단체 황의 농도가 높을 조건에서는 일부 황 분말이 용해되지 않으며 금속의 침출속도는 황의 증가에 따라 감소한다.

Keywords

References

  1. W. Verstraete, 2002: Environmental biotechnology for sustainability. J. Biotechnol. 94, 93-100 https://doi.org/10.1016/S0168-1656(01)00421-7
  2. G. Rossi, 1990: Biohydrometallurgy, McGraw-Hill, Hamburg, New York
  3. T. Pumpel, B. Pernfub, B. Pigher, L. Diels, and F. Schinner, 1995: A rapid screening method for the isolation of metal accumulating microorganisms. J. Ind. Microbiol Biotech. 14, 213-217
  4. A. Aleem, J. Isar, and A. Malik, 2003: Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Biores. Technolo. 86, 7-13 https://doi.org/10.1016/S0960-8524(02)00134-7
  5. I. Llamas, M. Argandona, E. Quesada, and A. del Moral, 2000: Transposon mutagenesis in Halomonas eurihanlina. Res. Microbiol. 151, 13-18 https://doi.org/10.1016/S0923-2508(00)00132-7
  6. M. Sabin, 1997: Battery waste recycling process, US patent 5,690,718
  7. O. Suita, 1994: Cobalt recovery method, US patent 4,908,462
  8. H.L. Ehrlich, 1981: Geomicrobiology, Marcel Dekkar De, New York
  9. T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, 2003: Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239-248 https://doi.org/10.1007/s00253-003-1448-7
  10. C. Cerruti, G. Curutchet, and E. Donati, 1998: Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans, J. Biotechnolo. 62, 209-219 https://doi.org/10.1016/S0168-1656(98)00065-0
  11. D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, 2008: Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management, 28, 333-338 https://doi.org/10.1016/j.wasman.2007.01.010
  12. P.R. Norris, 1990: Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich H.L., Brierly, C.L. (Eds), Microbial Mineral Recovery. McGraw-Hill, New York
  13. M.P. Silverman, and D.G. Lundgren, 1959: Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriology. 77, 642-647 https://doi.org/10.1002/path.1700770237
  14. O.H. Tuovinen, S. I. Niemela and H.G. Gyllenberg, 1971: Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek, 37, 489-496 https://doi.org/10.1007/BF02218519
  15. Biological leaching of Cu, Al, Zn, Ni, Co, Sn and Pb from waste electronic scrap using Thiobacillus ferrooxidans, J. Kor. Inst. Resources Recycling. 14, 17-25