초록
본 논문은 영상을 획득할 때 잡음센서나 통신채널 불량으로 흔히 생기는 임펄스 잡음을 효율적으로 제거하는 방법에 대해 논의 하고자 한다. 제안된 방법은 잡음 픽셀 검출과 추정이라는 두 단계에 의해 이루어진다. 임펄스 잡음 검출기를 통하여 영상 전체에 걸쳐 잡음 픽셀여부를 검출한 후 잡음 픽셀로 판정되면 주변의 잡음 픽셀 개수에 따라 적응력 있게 $3{\times}3$ 윈도우의 가중평균 혹은 $5{\times}5$ 윈도우의 가중평균을 사용하여 추정한다. 제안된 방법의 성능을 평가하기 위해 영상실험을 통하여 기존의 잡음 제거 방법들과 정성적인 비교, PSNR과 MAE를 통한 정량적인 비교 그리고 수행 시간을 측정한 결과 제안된 방법은 잡음 제거는 물론 원영상에 대한 상세한 정보 보존력이 뛰어나고 수행 시간 면에서도 우수함을 보였다.
In this work, a new adaptive weighted mean filter is proposed for preserving image details while effectively suppressing impulse noise. The proposed filter is based on a noise pixel detection-estimation strategy. All the pixels are first detected using an impulse noise detector. Then the detected noise pixels are replaced with the output of the weighted mean filter over adaptive working window according to the rate of corrupted neighborhood pixels, while noise-free pixels are left unaltered. We compare the proposed filter to other existing filters in the qualitative measure and quantitative measures such as PSNR and MAE as well as computation time to verify the capability of the proposed filter. Extensive simulations show that the proposed filter performs better than other filters in impulse noise suppression and detail preservation without increasing of running time.