기능성 나노입자

Review : Functional Nanoparticles

  • 이준웅 (한국과학기술정보연구원)
  • 발행 : 2008.10.31

초록

For the major scientific laboratories around the world, nanotechnology has been one of the key scientific issues since the end of the last millenium. The basic materials of this newly emerging technology are nanoparticles, which, in fact, have been used for many centuries. However, the physical properties of the particles were understood quite recently. In order to apply the new properties we have to protect and functionalize the surfaces of the particles, since without protection of the surfaces, nanoparticles grow themselves due to Ostwald Ripening. In this review, the author describes recent technical progress in the field of fuctionalization of various nanoparticles and their applications, so that readers can grasp the overall picture of this new technological field.

키워드

참고문헌

  1. http://snm.zhdk.ch/-aleks/seminare/Social Interaction/Nanotechnology.html
  2. Faraday, M., Philos. Trans. R. Soc. London, Ser. A, 1857
  3. Mie, G., Ann. Phys., 25, 377, 1908
  4. 이준웅, "반도체나노입자의 합성 및 응용기술 동향", 2007 기술동향보고서, BA709, 한국화학기술정보연구원, 2007
  5. 이준웅, "자성나노입자의 기술동향", 2006 기술동향보고서, BB132, 한국화학기술정보연구원, 2006
  6. 이준웅, "나노입자의 기능화 및 응용", 2008 기술동향보고서, 한국화학기술정보연구원, 2008, 발간 중
  7. 이준웅, "나노물질 기술동향", 2004 기술동향보고서, BA277, 한국화학기술정보연구원, 2004
  8. Adamson, A. W. and Gast, A. P., "Physical Chemistry of Surface", 6th ed., John Wiley & Sons, NY, 1997
  9. Mulvaney, P., et al., Langmuir, Vol. 12, No. 3, pp. 788-800, 1996 https://doi.org/10.1021/la9502711
  10. Lee, K. S., et. al., J. Phys. Chem. B, Vol. 109, No. 43, pp. 20331-20338, 2005 https://doi.org/10.1021/jp054385p
  11. Jain, P. K., et. al., Nano Today, Vol. 2, No. 1, pp. 18-29, 2007
  12. Jaes, A. J., et. al., Nano Today, Vol. 6, pp. 1029-2004, 2004
  13. Lu, A. J., et. al., Angew. Chem. Int. Ed., Vol. 46, pp. 1222-12442, 2007 https://doi.org/10.1002/anie.200602866
  14. Banin, U., Nature, Vol. 400, pp. 542-544, 1999 https://doi.org/10.1038/22979
  15. Norris, D. J. and Bawendi, M. G., Phys. Rev. B, Vol. 53, No. 24, pp. 16338-16346, 1996 https://doi.org/10.1103/PhysRevB.53.16338
  16. Banin, U. et al., J. Chem. Phys., Vol. 109, No. 6, pp. 2306-2309, 1998 https://doi.org/10.1063/1.476797
  17. Gorter, C. J., Phisica, Vol. 17, pp. 777-780, 1951 https://doi.org/10.1016/0031-8914(51)90098-5
  18. Schmid, G., "Nanoparticles : From Theory to Application", Wiley-VCH Verlag GmbH & Co., 2004
  19. Boyen, H-G., et. al., Adv. funct. Mater., Vol. 13, No. 5, pp. 359-364, 2003 https://doi.org/10.1002/adfm.200304319
  20. Bonnemann, H., et. al., Inorganica Chimica Acta, Vol. 350, pp. 617-624, 2003 https://doi.org/10.1016/S0020-1693(03)00108-7
  21. Thunemann, A. F., et. al., Langmuir, Vol. 22, No. 5, pp. 2351-2357, 2006 https://doi.org/10.1021/la052990d
  22. Vestal, C. R., et. al., J. Am. Chem. Soc., Vol. 124, No. 48, pp. 14312-14313, 2002 https://doi.org/10.1021/ja0274709
  23. Dresco, P. A., et. al., Langmuir, Vol. 15, No. 6, pp. 1945-1951, 1999 https://doi.org/10.1021/la980971g
  24. Ding, J. G., et. al., Polymer, Vol. 43, No. 8, pp. 2179-2184, 2002 https://doi.org/10.1016/S0032-3861(02)00046-0
  25. Park, J. I., et al., J. Am. Chem. Soc., Vol. 123, No. 24, pp. 5743-5746, 2001 https://doi.org/10.1021/ja0156340
  26. Ban, Z, H., et. al., "Nanoparticles and Their Characterization", J. Mater. Chem., Vol. 15, No. 43, pp. 4660-4662, 2005 https://doi.org/10.1039/b504304b
  27. Zhang, J., et. al., J. Phys. Chem. B., Vol. 110, No. 14, pp. 7122-7128, 2006 https://doi.org/10.1021/jp0560967
  28. Lu, Y., et. al., Nano Lett., Vol. 2, No. 3, pp. 183-186, 2002 https://doi.org/10.1021/nl015681q
  29. Santra, S., et al., Langmuir, Vol. 17, No. 10, pp. 2900-2906, 2001 https://doi.org/10.1021/la0008636
  30. Scott, J. H. J., et. al., Chem. Phys. Rev. B, Vol. 52, No. 17, pp. 12564-12571, 1995 https://doi.org/10.1103/PhysRevB.52.12564
  31. Nesper, R., et. al., Adv. Func. Mater., Vol. 16, No. 2, pp. 296-305, 2006 https://doi.org/10.1002/adfm.200500310
  32. Geng, J. F., et. al., Chem. Commun., pp. 2442-2443, 2004
  33. Lu, A. H., et. al., Chem. Commun., pp. 98-100, 2005
  34. Shenton, W., et al., Adv. Mater., Vol. 11, No. 6, pp. 449-452, 1999 https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<449::AID-ADMA449>3.0.CO;2-A
  35. Mattoussi, H., et al., J. Am. Chem. Soc., Vol. 122, No. 49, pp. 12142-12150, 2000 https://doi.org/10.1021/ja002535y
  36. Caruso, F., et al., J. Am. Chem. Soc., Vol. 121, No. 25, pp. 6039-6046, 1999 https://doi.org/10.1021/ja990441m
  37. Caruso, F., et al., J. Am. Chem. Soc., Vol. 121, No. 25, pp. 6039-6046, 1999 https://doi.org/10.1021/ja990441m
  38. Schuler, C., et al., Macromol. Rapid Commun., Vol. 21, pp. 750-753, 2000 https://doi.org/10.1002/1521-3927(20000701)21:11<750::AID-MARC750>3.0.CO;2-3
  39. Caruso, F., et al., Lagmuir, Vol. 16, No. 24, pp. 9595-9603, 2000 https://doi.org/10.1021/la000942h
  40. Yang, W., et. al., J. Coll. & Interf. Sci., Vol. 234, pp. 356-362, 2001 https://doi.org/10.1006/jcis.2000.7325
  41. Taton, T. A., et al., Science, Vol. 289, pp. 1757-1760, 2000 https://doi.org/10.1126/science.289.5485.1757
  42. Taton, T. A., et al., J. Am. Chem. Soc., Vol. 123, No. 21, pp. 5164-5165, 2001 https://doi.org/10.1021/ja0102639
  43. Englebienne, P., et. al., Analyst, Vol. 126, pp. 1645-1651, 2001 https://doi.org/10.1039/b105252g
  44. Keating, C. D., et. al., J. Phys. Chem. B, Vol. 102, No. 47, pp. 9404-9413, 1998 https://doi.org/10.1021/jp982723z
  45. Tae-Jong Yoon, et al., New J. Chem., Vol. 27, pp. 227-229, 2003 https://doi.org/10.1039/b209391j
  46. Hu, A., J. Am. Chem. Soc., Vol. 127, No. 36, pp. 12486-12487, 2005 https://doi.org/10.1021/ja053881o
  47. Jun, C. H., Chem. Commun., pp. 1619-1622, 2006
  48. Lu, A. H., Angew. Chem. Int. Ed., Vol. 43, pp. 4303-4306, 2004 https://doi.org/10.1002/anie.200454222
  49. Lee, J. W., et al., Angew. Chem. Int. Ed., Vol. 44, pp. 47427-7432, 2005
  50. 63. Hirsch, R., et al., J. Am. Chem. Soc., Vol. 122, pp. 12053-12054, 2000 https://doi.org/10.1021/ja005523l
  51. Ichia, L., et al., Chem. Commun., pp. 158-159, 2002
  52. Willner, I. et, al., Pure Appl. Chem., Vol. 74, No. 9, pp. 1773-1783, 2002 https://doi.org/10.1351/pac200274091773
  53. Shen, T. T., et al., Bioconj. Chem., Vol. 7, No. 3, pp. 311-316, 1996 https://doi.org/10.1021/bc960003u
  54. Widder, K. J., et al., Eur. J. Cancer & Clin. Oncol., Vol. 19, No. 1, pp. 135-139, 1983 https://doi.org/10.1016/0277-5379(83)90408-X
  55. Bulte, J. W. M and Kraitchman, D. L., NMR in Biomed. Vol. 17, pp. 484-499, 2004 https://doi.org/10.1002/nbm.924
  56. Sundstrom, J., J. Acq. Immu. Deficiency Syndroms, Vol. 35, No. 1, pp. 9-21, 2004 https://doi.org/10.1097/00126334-200401010-00002
  57. Gerion, D., et al., J. Am. Chem. Soc., Vol. 124, pp. 7070-7074, 2002 https://doi.org/10.1021/ja017822w
  58. Jamieson, T., et al., Biomater., Vol. 28, pp. 4717-4732, 2007 https://doi.org/10.1016/j.biomaterials.2007.07.014
  59. Jaiswal, J. K., et al., Nat. Biotechnol., Vol. 21, pp. 47-51, 2002 https://doi.org/10.1038/nbt767
  60. Zhu, L., et al., Appl. & Environ. Microbiol., Vol. 70, No. 1, pp. 597-598, 2004 https://doi.org/10.1128/AEM.70.1.597-598.2004
  61. Goldman, D., et. al., J. Am. Chem. Soc., Vol. 124, pp. 6378-6382, 2002 https://doi.org/10.1021/ja0125570
  62. So, M-K., et al., Nat. Biotechnol., Vol. 24, pp. 339-343, 2006 https://doi.org/10.1038/nbt1188
  63. Gao, X. H., et al., Nat. biotechnol., Vol. 22, pp. 969-976, 2004 https://doi.org/10.1038/nbt994