3-D Rat Hepatocytes' Culture on Polystyrene Nanofibrous Scaffold

폴리스티렌 나노섬유상에서의 간세포의 3차원 배양

  • Kim, Young-Jin (Department of Biomedical Engineering, Catholic University of Daegu) ;
  • Ahn, Chang-Hyun (Nano Practical Application Center) ;
  • Oh, Hwan-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young-Jin (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan-Han (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kang, Inn-Kyu (Department of Polymer Science, Kyungpook National University) ;
  • Kwon, Oh-Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 김영진 (대구가톨릭대학교 의공학과) ;
  • 안창현 (나노부품실용화센터) ;
  • 오환희 (금오공과대학교 고분자공학과) ;
  • 김영진 (금오공과대학교 고분자공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과) ;
  • 강인규 (경북대학교 고분자공학과) ;
  • 권오형 (금오공과대학교 고분자공학과)
  • Published : 2008.03.31

Abstract

We have fabricated polystyrene (PS) nanofibrous scaffold for hepatocyte culture by electrospinning method and subsequently coated with specific ligand of Poly[N-p-vinylbenzyl-O-$\beta$-D-galactopyranocyl-($1{\rightarrow}4$)-D-gluconamide](PVLA) to enhance hepatocytes attachment. Rat hepatocytes behavior on the PVLA-coated and non-coated PS nanofibrous matrices have been investigated. Electrospun PS nanofiber structures revealed randomly aligned fibers with average diameter of 500 nm. It is observed that PS nanofibrous matrix could incorporate many cells into the interior of the matrix probably due to the suitable pore size. Cell viabilities cultured on PVLA-coated PS nanofibrous mats were maintained for 3 weeks, while it was decreased rapidly on PVLA-coated PS dishes. High hepatic functions especially for albumin secretion and ammonia removal were maintained at least for 2 weeks on nanofibrous mats but rapidly decreased on flat PS dishes. These results indicate that nanofibrous structure enabled 3-D culture with high level of cell-cell contact results in providing cell-cell communications and subsequent long-term maintenance of specific cell functions.

전기방사법에 의해 폴리스테렌 나노섬유 부직포를 제조하였고, 간세포의 접착을 유도하기 위해 간세포접착 리간드인 Poly[N-p-vinylbenzyl-O-$\beta$-D-galactopyranocyl-($1{\rightarrow}4$)-D-gluconamide](PVLA)를 나노섬유의 표면에 코팅하였다. 얻어진 나노섬유는 평균직경이 500 nm이었고 분광학적인 방법을 통해 PS 나노섬유 표면의 개질 여부를 확인하였다. 장기간 배양시의 간세포 생존율을 MTT법으로 조사한 결과 기존의 세포배양접시에서는 급격하게 세포생존율이 감소함에 비해 PVLA가 코팅된 나노섬유상에서는 생존율이 서서히 감소하였으며 약 3주간에 걸쳐 간세포가 생존율이 유지되었다. 간세포의 대표적인 기능인 알부민분비 및 요소분해능을 측정한 결과 기존의 세포배양접시에서는 급격하게 간세포기능이 저하되었지만, PVLA가 코팅된 나노섬유상에서는 약 3주정도 초기의 간세포기능을 유지하는 것이 밝혀졌다.

Keywords

References

  1. J. P. Vacanti, Craniofacial Growth Series, 34, 171 (1998)
  2. B. Fuller, J. Hepatol., 7, 368 (1988) https://doi.org/10.1016/S0168-8278(88)80010-2
  3. P. Rivas and A. Fabrega, Transplant. Proc., 24, 1833 (1992)
  4. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993) https://doi.org/10.1016/0142-9612(93)90049-8
  5. A. G. Mikos, A. J. Thorsen, L. A. Gzerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti, Polymer, 35, 1068 (1994) https://doi.org/10.1016/0032-3861(94)90953-9
  6. S. H. Cho, S. H. Oh, and J. H. Lee, J. Biomater. Sci. Polym. Ed., 16, 933 (2005) https://doi.org/10.1163/1568562054414658
  7. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007)
  8. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  9. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Comp. Sci. Technol., 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  10. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  11. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  12. I. S. Lee, O. H. Kwon, W. Meng, I.-K. Kang, and Y. Ito, Macromol. Res., 12, 374 (2004) https://doi.org/10.1007/BF03218414
  13. S. N. Bhatia, M. L. Yarmush, and M. Toner, J. Biomed. Mater. Res., 34, 189 (1997) https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M
  14. M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res., 55, 137 (2001) https://doi.org/10.1002/1097-4636(200104)55:1<137::AID-JBM180>3.0.CO;2-L
  15. T. Hoshiba, M. Wakejima, C. S. Cho, G. Shiota, T. Akaike, and J. Biomed, Mater. Res. A, in press
  16. T. Akaike, S. Tobe, A. Kobayashi, M. Goto, and K. Kobayashi, Gastroenterol. Jpn., 28, 45 (1993)
  17. X. Geng, O. H. Kwon, and J. Jang, Biomaterials, 26, 5427 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.066
  18. Y. Ito, H. Hasuda, M. Kamitakahara, C. Otsuki, M. Tanihara, I.-K. Kang, and O. H. Kwon, J. Bio. Bioeng., 100, 43 (2005) https://doi.org/10.1263/jbb.100.43
  19. O. H. Kwon, I. S. Lee, Y.-G. Ko, W. Meng, K.-H. Jung, I.-K. Kang, and Y. Ito, Biomedial Materials, 2, S52 (2007) https://doi.org/10.1088/1748-6041/2/1/S08
  20. H.-J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004) https://doi.org/10.1016/S0142-9612(03)00609-4
  21. W. Meng, S.-Y. Kim, J. Yuan, J. C. Kim, O. H. Kwon, N. Kawazoe, G. Chen, Y. Ito, and I.-K. Kang, J. Biomater. Sci. Polym. Ed., 18, 81 (2007) https://doi.org/10.1163/156856207779146114