Orientation of Evaporated Pentacene Molecules on Rubbed Polyvinylcinnamate Film

러빙한 Polyvinylcinnamate 필름 위에 종착된 Pentacene 분자의 배향

  • Park, Sun-Hee (Materials Research Center for Information Display, Kyung Hee University) ;
  • Song, Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
  • 박선희 (경희대학교 영상정보소재기술연구센터) ;
  • 송기국 (경희대학교 영상정보소재기술연구센터)
  • Published : 2008.05.30

Abstract

Induction mechanism of molecular orientations for a rubbed polymer film as an alignment layer was investigated using polarized UV/Vis spectroscopic experiments for polyimide and polyvinylcinnamate whose conjugated electrons are located along main chain and side chain, respectively. By determining anisotropy formed in the rubbed film, LC director formed in the LC cell, and orientation direction of deposited pentacene molecules, it was found that LC orientation was induced mainly by molecular interactions whereas surface microgrooves formed by the rubbing process affect the orientation direction of deposited pentacene molecules.

러빙한 고분자 필름이 액정 분자와 증착된 분자의 배향을 유도하는 메커니즘을 이해하고자 $\pi$ 전자들의 공액구조가 주사슬과 곁사슬에 각각 있는 polyimide와 polyyinylcinnamate를 사용하여 필름과 LC 셀을 만들어 편광 UV/Vis 분광실험으로 조사하였다. 러빙한 필름 내에 형성되는 이방성, LC 셀의 액정 방향자, 그리고 종착된 pentacene의 배열방향을 측정하여, 액정배향은 microgroove 영향보다는 분자간 상호작용에 의하여 우선적으로 유도되는 반면에 pentacene 증착의 경우에는 러빙에 의하여 형성된 필름 표면의 microgroove 영향으로 배향이 유도되는 것을 알 수 있었다.

Keywords

References

  1. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, IEEE Electron Device Lett., 27, 249 (2006) https://doi.org/10.1109/LED.2006.870413
  2. C. Sheraw, L. Zhou, J. Huang, D. Gundlach, T. Jackson, M. Kane, I. Hill, M. Hammond, J. Campi, B. Greening, J. Francl, and J. West, Appl. Phys. Lett., 80, 1088 (2002) https://doi.org/10.1063/1.1448659
  3. H. Cheng, C. Lee, T. Hu, and J. Ho, J. Kor. Phys. Soc., 48, S115 (2006)
  4. C. Song, Polym. Sci. Tech., 14, 22 (2003)
  5. C. Dimitrakopoulos and D. Mascaro, IBM. J. RES. & DEV., 45, 11 (2001) https://doi.org/10.1147/rd.451.0011
  6. M. Chabinyc and A. Salleo, Chem. Mater., 16, 4509 (2004) https://doi.org/10.1021/cm049647z
  7. X. Chen, A. Lovinger, Z. Bao, and J. Sapjeta, Chem. Mater., 13, 1341 (2001) https://doi.org/10.1021/cm0008563
  8. M. Swiggers, G. Xia, J. Slinker, A. Gorodetsky, G. Malliaras, R. Headrick, B. Weslowski, R. Shashidhar, and C. Dulcey, Appl. Phys. Lett., 79, 1300 (2001) https://doi.org/10.1063/1.1394952
  9. W. Chou and H. Cheng, Adv. Funct. Mater., 14, 811 (2004) https://doi.org/10.1002/adfm.200305047
  10. S. Pyo, M. Lee, J. Jeon, J. Lee, M. Yi, and J. Kim, Adv. Funct. Mater., 15, 619 (2005) https://doi.org/10.1002/adfm.200400206
  11. S. Fritz, S. Martin, C. Frisbie, M. Ward, and M. Toney, J. Am. Chem. Soc., 126, 4084 (2004) https://doi.org/10.1021/ja049726b
  12. B. Kim, D. Kim, J. Chung, Y. Kim, I. Seo, S. Kwon, and K. Song, Polymer(Korea), 30, 362 (2006)
  13. T. Oo, Y. Ohta, N. Tanaka, T. Iwata, M. Kimura, and T. Akahane, Adv. Tech. Mater. Pro., 7, 23 (2005)
  14. O. Sung, S. Cho, W. Kim, K. Song, S. Paek, and J. Y. Lee, Macromol. Symp., 7, 29 (2007)
  15. A. Dyaduysha, A. Khizhnyak, T. Marusii, V. Reshetnyak, Y. Resnikov, and W. Park, Jpn. J. Appl. Phys., 34(8A), L1000 (1995) https://doi.org/10.1143/JJAP.34.L1000
  16. B. Lee, S. Ham, J. Lim, and K. Song, Polymer(Korea), 21, 1059 (1997)
  17. J. Lim, S. Choi, W. Kim, S. Kim, and K. Song, Polymer (Korea), 29, 413 (2005)
  18. S. Hahm, S. Lee, J. Suh, B. Chae, S. Kim, S. Lee, K. Lee, J. Jung, and M. Ree, High Perform. Polymer, 18, 549 (2006) https://doi.org/10.1177/0954008306068117
  19. S. Hahm, T. Lee, and M. Ree, Adv. Funct. Mater., 17, 1359 (2007) https://doi.org/10.1002/adfm.200600369
  20. K. Sakamtto, R. Arafune, A. Ito, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys., 80, 431 (1996) https://doi.org/10.1063/1.362744
  21. N. van Aerle, M. Barmentlo, and R. Hollering, J. Appl. Phys., 74, 3111 (1993) https://doi.org/10.1063/1.354577