무색 투명한 폴리이미드 공중합체 필름 : 열적-기계적 성질, 모폴로지, 및 광학 투명성

Colorless Copolyimide Films: Thermo-mechanical Properties, Morphology, and Optical Transparency

  • 진효승 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Jin, Hyo-Seong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 발행 : 2008.05.30

초록

폴리아믹산(PAA)의 열 이미드화 반응을 이용해서 4,4'-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)와 bis[4-(3-aminophenoxy)phenyl]sulfone(BAFS)의 단량체에 2,2-bis[4-(4-amino-phenoxy)phenyl]hexafluoropropane(BAPP)의 다양한 몰 비에 따른 삼불소메틸($CF_3$) 곁가지를 가지는 공중합체 폴리이미드(PI)를 합성하였다. 이 공중합체 PI는 N,N'-dimethylacetamide(DMAc)와 같은 용매에 잘 녹았으며 용액 캐스팅하여 얻은 필름은 유연하고 질긴 성질을 보였다. 공중합체 PI 필름의 열적-기계적 성질, 모폴로지 및 광학 투명도들을 측정하기 위해 시차 주사 열 분석기(DSC)와 열 중량 분석기(TGA), 넓은 각 X-선 회절도(XRD), 주사 전자현미경(SEM), 만능 인장 시험기(UTM) 그리고 자외선-가시광선 흡광도기(UV-Vis. spectrometer) 등을 사용하였다. 얻은 공중합체 PI 필름은 투명하였으며, 각 필름의 cut-off wavelength(${\lambda}_0$)은 $275{\sim}319\;nm$이었고, 노란색 지수(yellow index: YI)는 $3.65{\sim}10.37$의 값을 보여주었다. 공중합체 PI 필름의 열적-기계적 성질들은 BAPP의 몰비가 증가할수록 증가하였지만, 광학적 특성에서는 반대의 결과를 보여주었다.

Copolyimides containing pendant trifluoromethyl ($CF_3$) groups were synthesized from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS) with various concentrations of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane(BAPP) to poly(amic acid)(PAA), followed by thermal imidization. These copolyimides were readily soluble in N,N'-dimethylacetamide (DMAc) and could be solution-cast into a flexible and tough film. The thermomechanical properties, morphology and an optical transparency of the copolyimide films were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), scanning electron microscopy (SEM), universal tensile machine (UTM), and a UV-Vis spectrometer. The cast copolyimide films exhibited high optical transparency with a cut-off wavelength (${\lambda}_0$) of $275{\sim}319\;nm$ in UV-vis absorption and a low yellow index(YI) value of $3.65{\sim}10.37$. The thermo-mechanical properties of copolyimide films were enhanced linearly with increasing a BAPP content. In contrast, the optical transparency of the copolyimide films was found to get worse with increasing a BAPP content.

키워드

참고문헌

  1. C. Feger, M. M. Khojasteh, and M. S. Htoo, Advances in Polyimide Science and Technology, Technimic, Lancaster, PA, 1993
  2. T. D. Akinseye, I. Harruna, and K. B. Bota, Polymer, 38, 2507 (1997) https://doi.org/10.1016/S0032-3861(96)00778-1
  3. T. M. Moy and J. E. Mcgrath, J. Polym. Sci.; Part A: Polym. Chem., 32, 1903 (1988)
  4. J.-G. Liu, X.-J. Zhao, H.-S. Li, L. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006) https://doi.org/10.1177/0954008306063639
  5. G. Maier, Prog. Polym. Sci., 26, 3 (2001) https://doi.org/10.1016/S0079-6700(00)00043-5
  6. Y. N. Sazanov, Russian J. Appl. Chem., 74, 1253 (2001) https://doi.org/10.1023/A:1013768725369
  7. H. L. Tyan, C. M. Leu, and K. H. Wei, Chem. Mater., 13, 222 (2001) https://doi.org/10.1021/cm000560x
  8. D. J. Liaw, B. Y. Liaw, and K. L. Su, Polym. Adv. Technol., 10, 13 (1999) https://doi.org/10.1002/(SICI)1099-1581(199901/02)10:1/2<13::AID-PAT760>3.0.CO;2-7
  9. P. M. Hergenrother, K. A. Watson, Jr. J. G. Smith, J. W. Connell, and R. Yokota, Polymer, 43, 5077 (2002) https://doi.org/10.1016/S0032-3861(02)00362-2
  10. J. W. Xu, M. L. Chng, T. S. Chung, C. B. He, and R. Wang, Polymer, 44, 4715 (2003) https://doi.org/10.1016/S0032-3861(03)00430-0
  11. B. S. Dupont and N. Bilow, US Pat. 4, 592,925 (1986)
  12. A. L. Landis, and A. B. Naselow, US Pat. 4, 645,824 (1987)
  13. K. Higashi and Y. Noda, Eur Pat. 240-249 (1986)
  14. T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, Electron. Lett., 29, 2107 (1993) https://doi.org/10.1049/el:19931409
  15. H.-S. Jin and J.-H. Chang, J. Appl. Polym. Sci., 107, 109 (2008) https://doi.org/10.1002/app.26173
  16. C.-Y. Yang, L.-C. Hsu, and J. S. Chen, J. Appl. Polym. Sci., 98, 2064 (2005) https://doi.org/10.1002/app.22410
  17. T. Nakano, S. Nagaoka, and H. Kawakami, Polym. Adv. Technol., 16, 753 (2005) https://doi.org/10.1002/pat.650
  18. M. Niwa, S. Nagaoka, and H. Kawakami, J. Appl. Polym. Sci., 100, 2436 (2006) https://doi.org/10.1002/app.23349
  19. R. A. Dine-Hart and W. W. Wright, J. Appl. Polym. Sci., 11, 609 (1967) https://doi.org/10.1002/app.1967.070110501
  20. P. Delvigs, L. C. Hsu, and T. Serafini, J. Appl. Polym. Sci., B8, 29 (1970)
  21. J.-H. Chang and K. M. Park, Eur. Polym. J., 36, 2185 (2000) https://doi.org/10.1016/S0014-3057(99)00280-3
  22. J.-H. Chang and K. M. Park, Polym. Eng. Sci., 41, 2226 (2001) https://doi.org/10.1002/pen.10918
  23. X. S. Petrovic, I. Javni, A. Waddong, and G. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  24. Z. K. Zhu, Y. Yang, J. Yin, X. Y. Wang, Y. C. Ke, and Z. N. Qi, J. Appl. Polym. Sci., 3, 2063 (1999)
  25. E. Mazoniene, J. Bendoraitiene, L. Peciulyte, S. Diliunas, and A. Zemaitaitis, Prog. Sol. Stat. Chem., 34, 201 (2006) https://doi.org/10.1016/j.progsolidstchem.2005.11.046
  26. P. E. Cassidy, J. Macromaol. Sci. Chem., A1, 1435 (1981)
  27. S. D. Bruck, Polymer, 5, 435 (1964) https://doi.org/10.1016/0032-3861(64)90191-0
  28. F. Li, F. W. Harris, and S. Z. D. Cheng, Polymer, 38, 3223 (1996) https://doi.org/10.1016/S0032-3861(96)00885-3
  29. F. Li, S. Fang, J. J. Ge, P. S. Honigfort, J. C. Chen, F. W. Harris, and S. Z. D. Cheng, Polymer, 27, 5964 (1999)
  30. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. I. Kim, and J. C. Won, Polymer(Korea), 29, 204 (2005)