Use of Genetic Techniques to Analyze Wintering Population of Geese in Korea with Noninvasive Feces Samples

비침습적 분변 샘플을 이용한 우리나라 월동 기러기류의 유전분석

  • Kim, Min-Kyung (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University) ;
  • Won, Yong-Jin (Division of EcoScience, Ewha Womans University) ;
  • Lee, Sang-Don (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University)
  • 김민경 (이화여자대학교 환경공학과) ;
  • 원용진 (이화여자대학교 에코과학부) ;
  • 이상돈 (이화여자대학교 환경공학과)
  • Published : 2008.08.31

Abstract

This study was intended to test the feasibility of genetic analysis of wintering population of geese using their feces samples. This noninvasive approach is quite significant and effective because we do not need to capture or harm geese to obtain the samples. We collected the feces from two different populations of wintering geese in Korea in 2007. Finally thirty two feces were analyzed through a molecular genetic method. As a result, 14 haplotypes were identified and classified into two groups, white-fronted geese (Anser albifrons) and bean geese (Anser fabalis). We established the method to make molecular genetic experiment more efficient using the feces. This study has a significance as the first genetic result on wintering population of geese in Korea using noninvasive sampling method.

본 연구는 비침습적 분변 샘플을 이용하여 기러기류의 유전분석이 가능한지 알아보고자 수행되었다. 또한 본 연구에서는 분변을 이용한 연구의 실험적 효율성을 높이는 방법이 요구되었다. 따라서 2007년 한국에서 월동하는 겨울 기러기류의 분변을 서로 다른 두 집단에서 채집하였고, 최종적으로 총 32개 분변 샘플이 분자유전학적 기법으로 분석되었다. 그 결과 총 14개의 haplotype이 나타났으며, 이는 쇠기러기 (Anser albifrons)와 큰기러기(Anser fabalis)그룹으로 분류되었다. 분변을 이용한 연구는 야생에 서식하고 있는 종에게 직접적인 위해를 가하지 않는 방법으로 큰 의미가 있다. 본 연구를 통하여 분변 샘플을 이용한 분자유전학적 실험의 효율성을 높일 수 있는 연구방법이 찾아졌으며, 또한 이 결과는 비침습적 분변 샘플을 이용한 우리나라 월동 기러기류의 첫 번째 연구로서 그 의의가 있다.

Keywords

References

  1. 김인규, 김창숙, 함규황. 1999. 최근 10년 ('89-'98)간 주남 저수지 조류의 종수 및 개체수 변동에 관한 연구. 한국조류학회지. 6:127-132
  2. 문화재정보센터(http://www.cha.go.kr/newinfo/Culresult_Db_View.jsp?VdkVgwKey=16,03250000,ZZ&queryText=V_KDCD=16)
  3. 박진영, 원병오. 1993. 주남저수지에 도래하는 큰기러기와 쇠기러기의 월동생태. 경희대학교 한국조류연구소. 4:1-24
  4. Chambers PA. PS Duggan. JM Forbes and J Heritage. 2001. Arapid. reliable method for the extraction from avian faeces of total bacterial DNA to be used as a template for the detection of antibiotic resistance genes. J. Antimicrob. Chemoth,47:239-246 https://doi.org/10.1093/jac/47.2.239
  5. Cottrell PE. AW Trites and EH Miller. 1996. Assessing the use of hard parts in faeces to identify harbour seal prey: results of captive-feeding trials. Can. J. Zool. 74:875-880 https://doi.org/10.1139/z96-101
  6. Deagle BE. DJ Tollit. SN Jarman. MA Hindell. AW Trites and NJ Gales. 2005. Molecular scatology as a tool to study diet: analysis of prey DNA in seatS from captive Steller sea lions. Mol. Ecol. 14:1831-1842 https://doi.org/10.1111/j.1365-294X.2005.02531.x
  7. Hamilton MJ. T Yan and MJ Sadowsky. 2006. Development of goose- and duck-specific markers to determine source of Excherichia coli in waterways. Appl. Environ. Microb. 72:4012-4019 https://doi.org/10.1128/AEM.02764-05
  8. Horvath MB. B Martinez-Cruz. JJ Negro. L Kalmar and JA Godoy. 2005. An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian biol. 36:84-88 https://doi.org/10.1111/j.0908-8857.2005.03370.x
  9. Idaghdour Y. D Broderick and A Korrida. 2003. Faeces as a source of DNA for molecular studies in a threatened population of great bustards. Conserv. Genet. 4:789-792 https://doi.org/10.1023/B:COGE.0000006110.03529.95
  10. Kurose N. R Masuda and M Tatara. 2005. Fecal DNA analysis for identifying species and sex of sympatric camivores: A noninvasive method for conservation un the Tsushima islands. Japan. J. Hered. 96(6):688-697 https://doi.org/10.1093/jhered/esi124
  11. Lampa S. B Gruber. K Henle and M Hoehn. 2008. An optimisation aproach to increase DNA amplification success of otter faeces. Conserv. Genet. 9:201-210 https://doi.org/10.1007/s10592-007-9328-9
  12. Paxinos E. C Mcintosh. K Ralls and R Fleischer. 1997. A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Mol. Ecol. 6:483-486 https://doi.org/10.1046/j.1365-294X.1997.00206.x
  13. Reed JZ. DJ Tollit. PM Thompson and W Amos. 1997. Mole- cular SCatology :the use of molecular genetic analysis to assign species. sex and individual identity 10 seal faeces. Mol. Ecol. 6:225-234 https://doi.org/10.1046/j.1365-294X.1997.00175.x
  14. Segelbacher G. 2002. Noninvasive genetic analysis in birds: testing reliability of feather samples. Mol. Ecol. 2:367-369 https://doi.org/10.1046/j.1471-8286.2002.00180.x
  15. Sorenson MD. JC Ast, ED Dimcheff. T Yuri and DP Mindell. 1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrtes. Mol. Phylogenet. Evol. 12:105-144 https://doi.org/10.1006/mpev.1998.0602
  16. Taberlet P. JJ Cammara. S Griffin. E Uhres. O Hanotte. LP Waits. C Dubois-Paganon. T Burke and J Bouvet. 1997. Non-invasive genetic tracking of the endangered Pyrenean brown bear population. Mol. Ecol. 6:869-876 https://doi.org/10.1111/j.1365-294X.1997.tb00141.x
  17. Trites AW and R Joy. 2005. Dietary analysis from fecal samples: how many scats are enough? J. Mammal. 86:704-712 https://doi.org/10.1644/1545-1542(2005)086[0704:DAFFSH]2.0.CO;2