Responses of MFO System in Surf Clam, Pseudocardium sachalinensis, Injected with Sea-Nine 211 Antifoulant

Tin-free 방오제인 Sea-Nine 211에 노출된 북방대합에서 MFO 효소계의 반응

  • 이지선 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터(EMBRC)) ;
  • 전영하 (강원도 환동해출장소) ;
  • 심원준 (한국해양연구원 남해연구소) ;
  • 전중균 (강릉대학교 해양생명공학부.동해안해양생물자원연구센터(EMBRC))
  • Published : 2008.05.31

Abstract

Many alternative biocidal additives were applied to antifouling paint to replace TBT, and Sea-Nine 211 is one of alternating organic booster compounds used in antifouling paint. In this study, extent of Sea-Nine 211 toxicity on marine benthic bivalve is evaluated. Sea-Nine 211 was injected to surf clam, Pseudocardium sachalinensis, that inhabitate northern part of Gangwon Province, Korea. Survival rate of the clam and xenobiotics metabolizing enzyme activities in digestive gland were measured during 4 day-exposure period. The results were compared with those of TBT exposed clam. There were no mortality of clam in the solvent (DMSO) control group and the three Sea-Nine 211 exposure groups (5, 25, 50 mg kg$^{-1}$ body weight), while the clam exposed to 1, 2 and 5 mg kg$^{-1}$ TBT chloride (TBTC) demonstrated 70, 30 and 0% survival rate, respectively. The Sea-Nine 211 exposure group showed a tendency of cytochrome P450 (CYP) induction according to the exposure duration, on the other hand, CYP content was decreased in the TBT exposure group. NADPH cytochrome P450 reductase activity slightly increase according to the exposure duration in the Sea-Nine 211 exposure group, while TBTC inhibit its activity as CYP content. Moreover, there was no significant change of NADH cytochrome b5 reductate activity in the clam epxosed to Sea-Nine 211. In the TBTC exposure group, its activity increased in early exposure period and then significantly decreased the rest of exposure period. All the results indicate that Sea-Nine 211 demonstrated a tendency to induce CYP level, while TBTC inhibits the CYP level, NADPH cytochrome P450 reductase and NADH cytochrome b5 reductase activities.

방오도료로 많이 쓰인 유기주석화합물은 일반생물에게 미치는 독성이 매우 강하고 또한 내분비계 장애물질임이 밝혀지면서 이를 대체할 화합물들의 개발이 요구되고 있다. 그 가운데 이런 목적으로 만들어진 화합물인 Sea-Nine 211을 사용하여 이것이 해양생물 특히 저서생물인 패류에게 얼마나 영향을 미치는지를 살펴보고자 북방대합(P. sachalinensis)에게 강제 주사하여 생존율과 중장선의 미크로좀 중 I상 약물대사효소의 변화를 4일째가지 조사하였으며, 또한 비교를 위해 tributyltin chloride (TBTC)의 주사실험을 병행하였다. 생존율에서는 sham구나 Sea-Nine 211 실험구(5, 25 및 50 mg kg$^{-1}$)모두 생존하였으나 TBTC(1, 2 및 5 mg kg$^{-1}$) 실험구의 생존율은 4일째에 각각 70%, 30% 및 0%였다. 한편, 약물대사효소계 중 I상효소인 CYP는 Sea-Nine 211주사 후 시간이 지나면서 유도되었지만, TBTC는 반대로 저해되는 경향을 보였다. 그리고 P450R 활성은 Sea-Nine 211 실험구에서 시간 경과와 더불어 약간 증가하는 추세를 보였지만 sham구와는 유의적인 차이가 없었으나, TBTC실험구는 주사농도와 비례하면서 저해되었다. b5R활성도 마찬가지로 Sea-Nine 211 실험구는 큰 변화가 없었으나, TBTC실험 구에서는 유의적으로 저해되는 경향을 관찰할 수가 있었다. 이처럼 비주석계 방오도료 화합물인 Sea-Nine 211은 북방대합에 대한 독성이 TBTC에 비해 크게 낮았으며, 약물대사효소계에 미치는 영향도 TBTC는 저해하는데 반해서 P450R이나 b5R에는 별다른 변화를 일으키지 않았으나 CYP는 유도하였다.

Keywords

References

  1. Alzieu C. 1991. Environmental problems caused by TBT in France: Assessment, regulations, prospects. Mar. Environ. Res. 32:7-17 https://doi.org/10.1016/0141-1136(91)90029-8
  2. Beaumont AR. 1984. High mortality of the larvae of the common mussel at low concentrations of tributyltin. Mar. Poll. Bull. 15:402-405 https://doi.org/10.1016/0025-326X(84)90256-X
  3. Chambers JE and JD Yarbrough. 1976. Xenobiotic biotransformation in fish. Comp. Biochem. Physiol. 55C:77-84
  4. Davies IM, J Drinkwater and JC McKie. 1988. Effects of tributyltin compounds from antifoulants on Pacific oysters (Crassostrea gigas) in Scottish sea lochs. Aquaculture 74: 319-330 https://doi.org/10.1016/0044-8486(88)90376-6
  5. De Nys, RT Leya, R Maximilien, A Afsar, PSR Nair and PD Steinberg. 1996. The need for standardized broad scale bioassay testing: a case study using the red algae Laurencia rigida. Biofouling 10:213-224 https://doi.org/10.1080/08927019609386281
  6. Fent K and JJ Stegeman. 1991. Effects of tributyltin chloride in vitro on the hepatic microsomal monooxygenase system in the fish Stenotomus chrysops. Aquat. Toxicol. 20:159-168 https://doi.org/10.1016/0166-445X(91)90014-Z
  7. Fent K and JJ Stegeman. 1993a. Effects of tributyltin chloride in vitro on hepatic microsomal cytochrome P450 and associated enzyme activities in the marine fish Stenotomus chrysops. pp. 210-211. In 7th International Symposium on Responses of Marine Organisms to Pollutants (Stegeman JJ, MN Moore and ME Hahn eds.). Elsevier, Goteborg
  8. Fent K and JJ Stegeman. 1993b. Effects of tributyltin in vivo on hepatic cytochrome P450 forms in marine fish. Aquat. Toxicol. 24:219-240 https://doi.org/10.1016/0166-445X(93)90073-A
  9. Fent K and TD Bucheli. 1994. Inhibition of hepatic microsomal monooxygenase system by organotins in vitro in freshwater fish. Aquat. Toxicol. 28:107-126 https://doi.org/10.1016/0166-445X(94)90024-8
  10. Hansson T, J Rafter and JA Gustafsson. 1978. A comparative study on the hepatic in vitro metabolism of 4-androstene- 3,17-dione in the hagfish (Myxine glutinosa), dogfish (Squalus acanthias), and the rainbow trout (Salmo gairdneri). Gen. Comp. Endocr. 37:240-245 https://doi.org/10.1016/0016-6480(79)90112-6
  11. Jacobson AH and GL Willingham. 2000. Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258:103-110 https://doi.org/10.1016/S0048-9697(00)00511-8
  12. Kobayashi N. 1991. Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay. Mar. Pollut. Bull. 23:709-713 https://doi.org/10.1016/0025-326X(91)90765-K
  13. Kobayashi N and H Okamura. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull. 44:748-751 https://doi.org/10.1016/S0025-326X(02)00052-8
  14. Laughlin RB Jr. 1996. Bioaccumulation of TBT by aquatic organisms. pp. 331-355. In Organotin. Environmental Fate and Effects (Champ MA and PR Seligman eds.). Chapman & Hall, London
  15. Lawler IA and JC Aldrech. 1987. Sublethal effects of bis (tri-nbutyltin) oxide on Crassostrea gigas spat. Mar. Poll. Bull. 18:274-278 https://doi.org/10.1016/0025-326X(87)90503-0
  16. Lee RF. 1991. Metabolism of tributyltin by marine animals and possible linkages to effects. Mar. Environ. Res. 32:29-35 https://doi.org/10.1016/0141-1136(91)90031-3
  17. Lee RF. 1996. Metabolism of tributyltin by aquatic organisms. pp. 369-382. In Organotin. Environmental Fate and Effects (Champ MA and PR Seligman eds.). Chapman & Hall, London
  18. Lemaire P, A Matthews, L Forlin and DR Livingstone. 1994. Stimulation of oxyradical production of hepatic microsomes of flounder (Platichthys flesus) and perch (Perca fluviatilis) by model and pollutant xenobiotics. Arch. Environ. Contam. Toxicol. 26:191-200
  19. Lowry OH, NJ Roseborough, LA Farr and RJ Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275
  20. Maguire RJ and RJ Katz. 1985. Degradation of the tri-n-butyltin species in water and sediment from Toronto Harbor. J. Agric. Food Chem. 33:947-953 https://doi.org/10.1021/jf00065a043
  21. Marin MG, V Moschio, F Cima and C Celli. 2000. Embryotoxicity of butyltin compounds to the sea urchin Paracentrotus lividus. Mar. Environ. Res. 50:231-235 https://doi.org/10.1016/S0141-1136(00)00072-6
  22. Michel P. 1992. The need for speciation of metal and organometallic compounds for risk assessment in the marine environment: Mercury, arsenic and tin. Hydroecol. Appl. 4:43-53 https://doi.org/10.1051/hydro:1992205
  23. Morcillo Y and C Porte. 1997. Interaction of tributyl- and triphenyltin with the microsomal monooxygenase system of molluscs and fish from the western Mediterranean. Aquat. Toxicol. 38:35-46 https://doi.org/10.1016/S0166-445X(96)00841-7
  24. Morcillo Y, MJJ Ronis, M Solé and C Porte. 1998. Effects of tributyltin on the cytochrome P450 monooxygenase system and sex steroid metabolism in the clam Ruditapes decussata. Mar. Environ. Res. 46:583-586 https://doi.org/10.1016/S0141-1136(97)00079-2
  25. Omura T and R Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239:2370-2378
  26. Omura T and S Takesue. 1970. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J. Biochem. 67:249-257 https://doi.org/10.1093/oxfordjournals.jbchem.a129248
  27. Pesticides Safety Directorate. 1998. Antifouling Products. The Stationary Office, London
  28. Phillips AH and RG Langdon. 1962. Hepatic triphosphopyridine nucleotide- cytochrome c reductase: isolation, characterization, and kinetic studies. J. Biol. Chem. 237:2652-2660
  29. Shade WD, SS Hurt, AH Jacobson and KH Reinert. 1993. Ecological risk assessment of a novel marine antifoulant. American Society for Testing and Materials (ASTM) Special Technical Publication (STP) 1216:381-407
  30. Sole M. 2000. Effects of tributyltin on the MFO system of the clam Ruditapes decussata: a laboratory and field approach. Comp. Biochem. Physiol. 125C:93-101
  31. Stang PM and PF Seligman. 1986. Distribution and fate of butyltin compounds in the sediment of San Diego Bay. pp. 1256-1261. In Proceedings of the Oceans '86 International Organotin Symposium. Mar. Technol. Soc. Washington
  32. Stephenson MD, DR Smith, J Goetzl, G Ishikawa and M Martin. 1986. Growth abnormalities in mussels and oysters from areas with high levels of tributyltin in San Diego Bay. pp. 1246-1251. In Proceedings of the Oceans '86 International Organotin Symposium. Mar. Technol. Soc. Washington
  33. Stephenson MD. 1991. A field bioassay approach to determining tributyltin toxicity to oysters in California. Mar. Environ. Res. 32:51-59 https://doi.org/10.1016/0141-1136(91)90033-5
  34. Thian JE, MJ Waldock and ME Waite. 1987. Toxicity and degradation studies of tributyltin (TBT) and dibutyltin (DBT) in aquatic environments. pp. 1398-1402. In Proceedings of the Oceans '87 International Organotin Symposium. Mar. Technol. Soc. Washington
  35. Thompson JA, MG Sheffer, RC Pierce, YK Chau, JJ Cooney, WP Cullen and RJ Maguire. 1985. Organotin compounds in the aquatic environment: Scientific criteria for assessing their effects on environmental quality. National Research Council Canada, Ottawa
  36. Van Veld PA. 1990. Absorption and metabolism of dietary xenobiotics by the intestine of fish. CRC Crit. Rev. Aquat. Sci. 2:185-203
  37. WHO (World Health Organization). 1990. International Programme on Chemical Safety Environmental Health Criteria 116 Tributyltin Compounds, Geneva
  38. Willemsen PR, K Overbeke and A Suurmond. 1998. Repetitive testing of TBTO, Sea-Nine 211 and farnesol using Balanus amphitrite (Darwin) cypris larvae: Variability in larval sensitivity. Biofouling 12:133-147 https://doi.org/10.1080/08927019809378350
  39. Willingham GL and AH Jacobson. 1993. Efficacy and environmental fate of a new isothiazolone antifoulant. pp. 14.1-14.13. In Proceedings of the 3rd Asia-Pacific Conference of the Paint Research Association, Singapore
  40. Willingham GL and AH Jacobson. 1996. Designing an environmentally safe marine antifoulant. pp. 224-233. In Designing Safer Chemicals (DeVito SC and RL Garrett eds.). American Chemical Society Symposium Series 640. American Chemical Society, Washington