Self-Organized Grafting of Carbon Nanotubes by End-Functionalized Polymers

  • Lee, Sun-Hwa (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Ji-Sun (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Koo, Chong-Min (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lim, Bo-Kyung (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Sang-Ouk (Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST))
  • Published : 2008.04.30

Abstract

A variety of end-functionalized polymers were grafted spontaneously onto multi-walled carbon nano-tubes (MWNTs) using a solution mixing process. The end-functional groups of the polymers underwent noncovalent grafting to the defect sites at the surface of the purified MWNTs through zwitterionic interaction or hydrogen bonding. The physically grafted polymers including polystyrene (PS), poly(methyl methacrylate) (PMMA), polyethylene oxide (PEO), and polydimethylsiloxane (PDMS) provided sufficient compatibility with an organic solvent or polymer matrix, such that the nanotubes could be finely dispersed in various organic media. This approach is universally applicable to a broad range of polymer-solvent pairs, ensuring highly dispersed carbon nanotubes through simple solution mixing.

Keywords

References

  1. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Annu. Rev. Mater. Res., 34, 247 (2004) https://doi.org/10.1146/annurev.matsci.34.040203.114607
  2. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000) https://doi.org/10.1126/science.287.5453.637
  3. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernandez, Phil. Trans. R. Soc., 362, 2065 (2004) https://doi.org/10.1098/rsta.2004.1430
  4. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996) https://doi.org/10.1126/science.273.5274.483
  5. M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005) https://doi.org/10.1016/j.carbon.2005.01.031
  6. A. Hirsch, Angew. Chem. Int. Ed., 41, 1853 (2002) https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  7. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Macromol. Res., 12, 384 (2004) https://doi.org/10.1007/BF03218416
  8. C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski, Science, 300, 775 (2003) https://doi.org/10.1126/science.1080848
  9. I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007) https://doi.org/10.1007/BF03218822
  10. C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo, Macromol. Res., 14, 456 (2006) https://doi.org/10.1007/BF03219110
  11. W. K. Park, J. H. Kim, S. S. Lee, J. Kim, G. W. Lee, and M. Park, Macromol. Res., 13, 206 (2005) https://doi.org/10.1007/BF03219053
  12. Y. W. Lee, S. M. Kang, K. R. Yoon, Y. S. Chi, I. S. Choi, S. P. Hong, B. C. Yu, H. J. Paik, and W. S. Yun, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  13. Y. Kang and T. A. Taton, J. Am. Chem. Soc., 125, 5650 (2003) https://doi.org/10.1021/ja034082d
  14. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett., 3, 269 (2003) https://doi.org/10.1021/nl025924u
  15. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001) https://doi.org/10.1021/ja010172b
  16. H. Murakami, T. Nomura, and N. Nakashima, Chem. Phys. Lett., 378, 481 (2003) https://doi.org/10.1016/S0009-2614(03)01329-0
  17. S. H. Lee, H. T. Ham, J. S. Park, I. J. Chung, and S. O. Kim, Macromol. Symp., 249-250, 618 (2007)
  18. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richsrdson, and N. G. Tassi, Nat. Mater., 2, 338 (2003) https://doi.org/10.1038/nmat778
  19. B. Z. Tang and H. Xu, Macromolecules, 32, 2569 (1999) https://doi.org/10.1021/ma981825k
  20. M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 342, 265 (2001) https://doi.org/10.1016/S0009-2614(01)00490-0
  21. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, and G. C. Walker, J. Am. Chem. Soc., 124, 9034 (2002) https://doi.org/10.1021/ja026104m
  22. J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Phys. Rev. B, 58, R7492 (1998) https://doi.org/10.1103/PhysRevB.58.R7492
  23. W. Huang, S. Fernando, L. F. Allard, and Y.-P. Sun, Nano Lett., 3, 565 (2003) https://doi.org/10.1021/nl0340834
  24. H. Hu, P. Bhowmik, B. Zhao, M. A. Hamon, M. E. Itkis, and R. C. Haddon, Chem. Phys. Lett., 345, 25 (2001) https://doi.org/10.1016/S0009-2614(01)00851-X
  25. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. -S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  26. C. E. Anson, C. S. Creaser, and G. R. Stephenson, Spectrochim. Acta Part A, 52, 1183 (1996) https://doi.org/10.1016/0584-8539(96)01678-9
  27. M. Bieri and T. Burgi, Langmuir, 22, 8379 (2006) https://doi.org/10.1021/la061454y
  28. M. Wang, K. P. Pramoda, and S. H. Goh, Carbon, 44, 613 (2006) https://doi.org/10.1016/j.carbon.2005.10.001