In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Published : 2008.06.30

Abstract

Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Keywords

References

  1. S. Yin, T. Sato, and A. M. El-Toni, J. Colloid Interf. Sci., 300, 123 (2006) https://doi.org/10.1016/j.jcis.2006.03.073
  2. Z. Zhong, Y. Yin, B. Gates, and Y. Xia, Adv. Mater., 12, 206 (2000) https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
  3. Y. Meng, D. Chen, and X. Jiao, J. Am. Chem. Soc., 7, 18 (2006)
  4. C. H. M. Caris, L. P. M. van Elven, A. M. van Herk, and A. L. German, Br. Polym. J., 21, 133 (1989) https://doi.org/10.1002/pi.4980210207
  5. C. Huang, J. Colloid Interf. Sci., 170, 275 (1995) https://doi.org/10.1006/jcis.1995.1098
  6. X. Li and Z. Sun, J. Appl. Polym. Sci., 58, 1991 (1995) https://doi.org/10.1002/app.1995.070581109
  7. H. T. Oyama, R. Sprycha, Y. Xie, R. E. Partch, and E. Matijevic, J. Colloid Interf. Sci., 160, 298 (1993) https://doi.org/10.1006/jcis.1993.1400
  8. S. J. Park and E. Ruckenstein, Polymer, 31, 175 (1990) https://doi.org/10.1016/0032-3861(90)90371-5
  9. X. Huang and W. J. Brittain, Macromolecules, 34, 3255 (2001) https://doi.org/10.1021/ma001670s
  10. M. Bakhshaee, R. A. Pethrick, H. Rashid, and D. C. Sherrington, Polym. Commun., 26, 185 (1985)
  11. E. Bourgeat-Lami and J. Lang, J. Colloid Interf. Sci., 210, 281 (1999) https://doi.org/10.1006/jcis.1998.5939
  12. C. Barthet, A. J. Hickey, D. B. Cairns, and S. P. Armes, Adv. Mater., 11, 408 (1999) https://doi.org/10.1002/(SICI)1521-4095(199903)11:5<408::AID-ADMA408>3.0.CO;2-Y
  13. A. Schmid, S. Fujii, and S. P. Armes, Langmuir, 22, 4923 (2006) https://doi.org/10.1021/la060308p
  14. I. Sondi, T. H. Fedynshyn, R. Sinta, and E. Matijevic, Langmuir, 16, 9031 (2000) https://doi.org/10.1021/la000618m
  15. M. J. Percy, J. I. Amalvy, D. P. Randall, and S. P. Armes, Langmuir, 20, 2184 (2004) https://doi.org/10.1021/la035868s
  16. F. Tiarks, K. Landfester, and M. Antonietti, Langmuir, 17, 5775 (2001) https://doi.org/10.1021/la010445g
  17. E. Bourgeat-Lami and J. Lang, J. Colloid Interf. Sci., 197, 293 (1998) https://doi.org/10.1006/jcis.1997.5265
  18. F. Corcos, E. Bourgeat-Lami, C. Novat, and J. Lang, Colloid Polym. Sci., 277, 1142 (1999) https://doi.org/10.1007/s003960050503
  19. K. Yoshinaga, T. Yokoyama, Y. Sugawa, H. Karakawa, N. Enomoto, H. Nishida, and M. Komatsu, Polym. Bull., 28, 663 (1992) https://doi.org/10.1007/BF00295970
  20. M. Chen, S. Zhou, L. Wu, S. Xie, and Y. Chen, Macromol. Chem. Phys., 206, 1896 (2005) https://doi.org/10.1002/macp.200500200
  21. M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, and S. P. Armes, Langmuir, 16, 6913 (2000) https://doi.org/10.1021/la0004294
  22. M. Chen, L. Wu, S. Zhou, and B. You, Macromolecules, 37, 9613 (2004) https://doi.org/10.1021/ma048431f
  23. M. Chen, S. Zhou, B. You, and L. Wu, Macromolecules, 38, 6411 (2005) https://doi.org/10.1021/ma050132i
  24. S.-J. Fang, K. Fujimoto, S. Kondo, K. Shiraki, and H. Kawaguchi, Colloid Polym. Sci., 278, 864 (2000) https://doi.org/10.1007/s003960000337
  25. S.-J. Fang and H. Kawaguchi, Colloid Polym. Sci., 280, 984 (2002) https://doi.org/10.1007/s00396-001-0634-3
  26. S. Gu, H. Akama, D. Nagao, Y. Kobayashi, and M. Konno, Langmuir, 20, 7948 (2004) https://doi.org/10.1021/la049280c
  27. S. Gu, S. Inukai, and M. Konno, J. Chem. Eng. Jpn., 35, 977 (2002) https://doi.org/10.1252/jcej.35.977
  28. S. Gu, S. Inukai, and M. Konno, J. Chem. Eng. Jpn., 36, 1231 (2003) https://doi.org/10.1252/jcej.36.1231
  29. Y. Yamada, T. Sakamoto, S. Gu, and M. Konno, J. Colloid Interf. Sci., 281, 249 (2005) https://doi.org/10.1016/j.jcis.2004.08.030
  30. J. Lee, J. U. Ha, S. Choe, and S. E. Shim, J. Colloid Interf. Sci., 298, 663 (2006) https://doi.org/10.1016/j.jcis.2006.01.001
  31. H. Namgoong, D. J. Woo, and S. H. Lee, Macromol. Res., 15, 633 (2007) https://doi.org/10.1007/BF03218943
  32. K. C. Lee and S. Y. Lee, Macromol. Res., 15, 244 (2007) https://doi.org/10.1007/BF03218783
  33. J. Lee, C. K. Hong, S. Choe, and S. E. Shim, J. Colloid Interf. Sci., 310, 112 (2007) https://doi.org/10.1016/j.jcis.2006.11.008
  34. K. E. J. Barrett, Dispersion Polymerization in Organic Media, Wiley, London, 1975
  35. A. J. Paine, W. Luymes, and J. McNulty, Macromolecules, 23, 3104 (1990) https://doi.org/10.1021/ma00214a012