Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain

  • Yoo, Hye-Jin (Department of Organic Material Science and Engineering, College of Engineering, Pusan National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, College of Engineering, Pusan National University)
  • Published : 2008.10.31

Abstract

To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.

Keywords

References

  1. J. H. Lee, Y. M. Ju, and D. M. Kim, Biomaterials, 21, 683 (2000) https://doi.org/10.1016/S0142-9612(99)00197-0
  2. A. Korematsu, Y. Takemoti, T. Nakaya, and H. Inoue, Biomaterials, 23, 263 (2002) https://doi.org/10.1016/S0142-9612(01)00104-1
  3. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. Lee, H. Suh, and K. S. Choi, Biomaterials, 22, 851 (1998)
  4. S. L. Cooper, J. Biomater. Sci.-Polym. E, 10, 679 (1999) https://doi.org/10.1163/156856299X00874
  5. M. D. Lelah and S. L. Cooper, Polyurethane in Medicine, FL, CRC Press, 1986, pp 57-110
  6. Y. J. Li, T. Nakaya, and Z. Zhang, J. Biomater. Appl., 12, 167 (1997) https://doi.org/10.1177/088532829701200205
  7. G. A. Abraham and J. S. Roman, Biomaterials, 23, 1625 (2002) https://doi.org/10.1016/S0142-9612(01)00289-7
  8. D. K. Han, K. D. Park, and Y. H. Kim, J. Biomater. Sci.-Polym. E, 9, 163 (1998) https://doi.org/10.1163/156856298X00497
  9. Y. Uyama, K. Kato, and Y. Ikada, Adv. Polym. Sci., 137, 3 (1998)
  10. W. Marconi, A. Galloppa, A. Mattinell, and A. Piozzi, Biomaterials, 16, 449 (1995) https://doi.org/10.1016/0142-9612(95)98817-X
  11. A. A. Durrani, J. A. Hayward, and D. Chapman, Biomaterials, 7, 121 (1986) https://doi.org/10.1016/0142-9612(86)90068-2
  12. Y. J. Li, K. Mattews, H. M. Kodama, and T. Nakaaya, Macromol. Chem. Phys., 196, 143 (1995)
  13. A. Korematsu, Y. J. Li, T. Murakami, and T. Nakaya, J. Mater. Res., 14, 378 (1999)
  14. L. L. Yung and S. L. Cooper, Biomaterials, 19, 31 (1998) https://doi.org/10.1016/S0142-9612(97)00220-2
  15. T. G. Grasel, J. A. Pierce, and S. L. Cooper, J. Biomed. Mater. Res., 21, 815 (1987) https://doi.org/10.1002/jbm.820210702
  16. M. S. Munro, R. C. Eberhart, N. J. Naki, B. E. Brink, and W. J. Fry, Amer. Soc. Artif. Int. Organs J., 6, 65 (1983)
  17. J. R. Frautschi, M. S. Munro, D. R. Lloyd, and R. C. Eberhart, Trans. Amer. Soc. Artif. Int. Organs, 29, 242 (1983)
  18. R. S. Edmundson, Chem. Ind. (London), 20, 828 (1962)
  19. F. E. Bailey and J. Y. Koleske, Poly(ethylene oxide), Academic Press, New York, 1976, p 20
  20. J. H. Lee and S. H. Kim, Polymer(Korea), 21, 332 (1997)
  21. J. G. F. Boats, L. van der Does, and A. Bantjes, Biomaterials, 7, 393 (1986) https://doi.org/10.1016/0142-9612(86)90011-6
  22. J. G. F. Boats, L. van der Does, and A. Bantjes, Brit. Polym. J., 19, 527 (1987) https://doi.org/10.1002/pi.4980190606
  23. E. Brinkman, A. Poot, T. Beugeling, L. van der Does, and A. Bantjes, Int. J. Artif. Organs, 12, 390 (1989) https://doi.org/10.1177/039139888901200608