Preparation of Polymer Composites Containing Gold Nanonetworks Using an Amphiphilic Poly(oxyethylene) Brush

  • Cha, Sang-Ho (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jong-Uk (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jong-Chan (Department of Chemical and Biological Engineering, Seoul National University)
  • Published : 2008.12.31

Abstract

We synthesized gold nanonetwork using the amphiphilic polymer brush, poly(oxyethylene) containing decyltri(oxyethylene)thiomethyl ($C_{10}H_{21}(OCH_2CH_2)_3SCH_2-$) side groups, as a stabilizer and/or a template. When tetrabutylammonium borohydride solution in THF was added to a mixture solution of the polymer and $LiAuCl_4$ in THF, 0-D gold nanomaterials were obtained. However, when an aqueous solution of sodium borohydride was added, gold nanonetworks were synthesized. The composites composed of polymer/0-D gold nanomaterials and polymer/gold nanonetworks showed electrical conductivities of ${\sim}10^{-9}$ and ${\sim}10^{-3}S/cm$, respectively, which indicated that the gold nanonetworks increased the electrical conductivity.

Keywords

References

  1. S. Förster and M. Antonietti, Adv. Mater., 10, 195 (1998) https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
  2. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, Science, 278, 838 (1997) https://doi.org/10.1126/science.278.5339.838
  3. R. Djalali, S. Y. Li, and M. Schmidt, Macromolecules, 35, 4282 (2002) https://doi.org/10.1021/ma0113733
  4. K. Dayananda, M. S. Kim, B. S. Kim, and D. S. Lee, Macromol. Res., 15, 385 (2007) https://doi.org/10.1007/BF03218803
  5. Y. P. Jung, Y. K. Son, and J. H. Kim, Macromol. Res., 15, 82 (2007) https://doi.org/10.1007/BF03218756
  6. D. Shin, N. Ozeki, Y. Nakamoto, and G. Konish, Macromol. Res., 14, 255 (2006) https://doi.org/10.1007/BF03219079
  7. J. U. Kim, S. H. Cha, and J. C. Lee, Macromol. Rapid Commun., 25, 637 (2004) https://doi.org/10.1002/marc.200300105
  8. Y. Guillaneuf and P. Castignolles, J. Polym. Sci. Part A: Polym. Chem., 46, 897 (2008) https://doi.org/10.1002/pola.22433
  9. M. Netopilík and P. Kratochvíl, Polymer, 44, 3431 (2003) https://doi.org/10.1016/S0032-3861(03)00258-1
  10. X. M. Li, M. R. de Jong, K. Inoue, S. Shinkai, J. Huskens, and D. N. Reinhoudt, J. Mater. Chem., 11, 1919 (2001) https://doi.org/10.1039/b101686p
  11. E. J. Shelley, D. Ryan, S. R. Johnson, M. Couillard, D. Fitzmaurice, P. D. Nellist, Y. Chen, R. E. Palmer, and J. A. Preece, Langmuir, 18, 1791 (2002) https://doi.org/10.1021/la0109260
  12. G. C. Lica, B. S. Zelakiewicz, and Y. Y. Tong, J. Electroanal. Chem., 554, 127 (2003) https://doi.org/10.1016/S0022-0728(03)00117-7
  13. O. Celik and O. Dag, Angew. Chem. Int. Ed., 40, 3800 (2001)
  14. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, and J. R. Owen, Langmuir, 14, 7340 (1998) https://doi.org/10.1021/la980625z
  15. O. Rheingans, N. Hugenberg, J. R. Harris, K. Fischer, and M. Maskos, Macromolecules, 33, 4780 (2000) https://doi.org/10.1021/ma991985b
  16. T. K. Bronich, P. A. Keifer, L. S. Shlyakhtenko, and A. V. Kabanov, J. Am. Chem. Soc., 127, 8236 (2005) https://doi.org/10.1021/ja043042m
  17. M. Sakamoto, T. Tachikawa, M. Fujitsuka, and T. Majima, Langmuir, 22, 6361 (2006) https://doi.org/10.1021/la060304k
  18. J. K. Kim and H. Ahn, Macromol. Res., 16, 163 (2008) https://doi.org/10.1007/BF03218846
  19. C. J. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, Inorg. Chem., 45, 7544 (2006) https://doi.org/10.1021/ic0519382
  20. G. Ramanath, J. D'Arcy-Gall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar, and K. Vijayamohanan, Langmuir, 20, 5583 (2004) https://doi.org/10.1021/la0497649
  21. L. Pei, K. Mori, and M. Adachi, Langmuir, 20, 7837 (2004) https://doi.org/10.1021/la049262v
  22. J. U. Kim, S. H. Cha, K. Shin, J. Y. Jho, and J. C. Lee, Adv. Mater., 16, 459 (2004) https://doi.org/10.1002/adma.200305613
  23. R. Zeng, M. Z. Rong, M. Q. Zhang, H. C. Liang, and H. M. Zeng, J. Mater. Sci. Lett., 20, 1473 (2001) https://doi.org/10.1023/A:1017962010416
  24. J. J. Bergmeister and L. T. Taylor, Chem. Mater., 4, 729 (1992) https://doi.org/10.1021/cm00021a043
  25. C. G. Wu, J. Y. Hwang, and S. S. Hsu, J. Mater. Chem., 11, 2061 (2001) https://doi.org/10.1039/b009419f
  26. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, Ind. Eng. Chem. Res., 44, 7617 (2005) https://doi.org/10.1021/ie0501172
  27. K. Sakamaki, J. Ohshita, A. Kunai, H. Nakao, A. Adachi, and K. Okita, Appl. Organomet. Chem., 15, 939 (2001) https://doi.org/10.1002/aoc.248
  28. T. L. Truong, N. D. Luong, J. D. Nam, Y. Lee, H. R. Choi, J. C. Koo, and H. N. Nguyen, Macromol. Res., 15, 465 (2007) https://doi.org/10.1007/BF03218815