DOI QR코드

DOI QR Code

Suppression of Bacterial Wilt in Tomato Plant Using Pseudomonas putida P84

Pseudomonas putida P84 균주를 이용한 토마토 풋마름병의 억제

  • Published : 2008.04.01

Abstract

Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tomato in Korea and no effective control measures are available yet. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. A rhizobacterial population of 150 Pseudomonas strains, isolated from the rhizosphere soil of various plants grown at different sites, was screened for 2,4-diacetylphloroglucinol producing gene (PhlD) by PCR. Two strains (P83 and P84) among them were found to be phlD positive. When the isolates were analysed by 16S rDNA (Sensu Stricto), all isolates yielded amplified products of 1,018bp. Of the 150 isolates of Pseudomonas spp., a bacterial strain P. putida P84 isolated from tomato rhizosphere showed to suppress a wide range of phytopathogenic bacteria in vitro. The best source of carbon for P84 strain were glucose, arabinose, inositol and melibiose. In greenhouse experiments, P84 strain suppressed the development of bacterial wilt in tomato with a control value of 60%.

Ralstonia solanacearum에 의한 풋마름병은 토마토, 감자 등의 작물에 심각한 피해를 주고 있으나, 효과적인 방제법이 없는 실정이다. 일반 병원균의 생물적 방제를 위해 Pseudomonas속의 세균이 가장 일반적으로 이용되고 있는데, 이번 연구에서는 각종 작물의 재배지 토양에서 형광성 세균을 분리하여 Pseudomonas속 특이적 PCR과 항생물질(2,4-diacetylphloroglucinol) 생산 관련 유전자의 유무를 조사하였다. 분리된 150개의 Pseudomonas속 세균 중 항생물질 관련 유전자가 검출된 균은 2균주뿐이였으며, 그중 토마토 근권토양으로 분리된 P. putida P84 세균이 각종 식물 병원 세균에 대해 가장 높은 실내 항균력을 나타내었다. P84 균주의 탄소원별 증식효과는 glucose 첨가시에 가장 좋았으며, arabionse, inositol, melibiose 첨가시에도 우수한 증식효과를 나타내었다. P84세균을 이용한 토마토 풋마름병의 포트실험 결과에서는 60%의 방제효과를 나타내었다.

Keywords

References

  1. Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. and Conteras, A. 1989. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am. Potato. J. 66: 315-332 https://doi.org/10.1007/BF02854019
  2. Cook, D., Barlow, E. and Sequeira, L. 1989. Genetic diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphism with DNA probes that specify virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2: 113-121 https://doi.org/10.1094/MPMI-2-113
  3. De La Fuente, L., Thomashow, L. S., Weller, D. M., Bajsa, N., Quagliotto, L., Chernin, L. and Arias, A. 2004. Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics exerts a broad spectrum of biocontrol activity. Eur. J. Plant Pathol. 110: 671-681 https://doi.org/10.1023/B:EJPP.0000041569.35143.22
  4. Elabyad, M. S., Elsayed, M. A., Elshanshoury, A. R. and Elsabbagh, S. M. 1993. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149: 185-195 https://doi.org/10.1007/BF00016608
  5. Gamalero, E., Lingua, G., Berta and Lemanceau, P. 2003. Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23: 407-418 https://doi.org/10.1051/agro:2003014
  6. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29: 66-72 https://doi.org/10.1016/S1049-9644(03)00124-5
  7. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 29: 65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  8. He, L. Y., Sequeira, L. and Kelman, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357-1361 https://doi.org/10.1094/PD-67-1357
  9. Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B. and Wilson, M. 2007. Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biol. Control 41: 199-206 https://doi.org/10.1016/j.biocontrol.2007.01.008
  10. Park, K., Ahn, I. P. and Kim, C. H. 2001. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29: 48-53 https://doi.org/10.1080/12298093.2001.12015759
  11. Picard, C., Di Cello, F., Ventura, M., Fani, R. and Guckert, A. 2000. Frequency and biodiversity of 2,4-Diacetylphloroglucinolproducing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955 https://doi.org/10.1128/AEM.66.3.948-955.2000
  12. Raaijmakers, J. M., Weller, D. M. and Thomashow, L.S. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881-887
  13. Ran, L. X., Liu, C. Y., Wu, G. J., Loon, L. C. and Baaker, P. A. H. M. 2005. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol. Control 32: 111-120 https://doi.org/10.1016/j.biocontrol.2004.08.007
  14. 서상태, 박종한, 한경숙, 정승룡. 2006. 포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발. 식물병연구 12: 267-271 https://doi.org/10.5423/RPD.2006.12.3.267
  15. Terry, L. A. and Joyce, D. C. 2004. Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biol. Technol. 32: 1-13 https://doi.org/10.1016/j.postharvbio.2003.09.016
  16. Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder formulations of Pseudomonas fluorescens to control pigeonpea wilt. Biol. Control 8: 166-171 https://doi.org/10.1006/bcon.1997.0511
  17. Widmer, F., Seidler, R. J., Gillevet, P. M., Watrud, L. S. and Di Giovanni, G. D. 1998. A highly selective PCR protocol for detection 16S rRNA genes of the genus Pseudomonas (Sensu Stricto) in environmental samples. Appl. Environ. Microbiol. 64: 2545-2553
  18. Winding, A., Binnerup, S. J. and Pritchard, H. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47: 129-141 https://doi.org/10.1016/S0168-6496(03)00261-7
  19. Yabuuchi, E., Kosako, Y., Yano. I., Hota, H. and Nishiuchi, Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov., Ralstonia solanacearum (Smith, 1986) comb. nov. Microbiol. Immun. 39: 897-904 https://doi.org/10.1111/j.1348-0421.1995.tb03275.x