Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 13 Issue 6
- /
- Pages.117-125
- /
- 2008
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking
불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘
- Published : 2008.11.30
Abstract
The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.
실시간 입력영상 분석에 의한 객체 추적은 사람의 시각이 요구되는 여러 응용분야에서 관심 있는 주제 중 하나이다. 객체를 추적하기 위해서는 객체 검지가 선행 된다. 실외 환경에서 안정적인 객체 검지 성능의 달성은 태양의 남중고도 변화에 따른 빛과 그림자의 변화, 자연현상 등의 다양한 환경변화를 수용하는 효과적인 적응적 배경영상 생성 방법이 필요하다. 본 논문에서는 불법 주정차 무인 자동 단속 응용에 효과적으로 활용 가능한 환경 변화에 강건한 적응적 배경영상 생성과 이동 객체의 정지 여부를 판단하는 방법을 제안한다. 본 논문에서 제안하는 적응적 배경영상 생성 방법은 먼저, 초기 배경영상을 생성 후, 생성된 초기 배경영상과 입력영상 프레임 간의 차연산 기법으로 객체를 검지하고, 객체 검지 결과로 이동객체를 추적한다. 또한 객체 검지의 결과로부터 얻어진 객체영역을 제외한 입력영상의 영역을 활용하여 배경영상을 갱신한다. 이후 갱신된 배경영상과 입력영상 간의 차연산 방법으로 객체 검지를 수행하고 이후, 추적, 객체영역을 제외한 영역으로 배경영상 갱신의 과정을 반복한다. 실험에서는 제안방법을 가변하는 실제 도로환경에 적용하여 효과적으로 객체 검지가 가능함과 서행하는 객체 또한 효과적으로 검지됨을 보이고 이동 객체의 정지 여부를 판단할 수 있음을 보인다.