DOI QR코드

DOI QR Code

Design of Novel Hybrid Optical Modulator Incorporating Electro-Optic Polymer Waveguide into Silicon Photonic Crystal

실리콘/폴리머 물질 기반의 하이브리드 광 결정 광변조기 설계

  • Sung, Jun-Ho (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • Lee, Min-Woo (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • Choi, Chul-Hyun (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • Lee, Seung-Gol (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • Park, Se-Guen (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • Lee, El-Hang (Optics and Photonics Elite Research Center (OPERA), INHA University) ;
  • O, Beom-Hoan (Optics and Photonics Elite Research Center (OPERA), INHA University)
  • 성준호 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 이민우 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 최철현 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 이승걸 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 박세근 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 이일항 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA)) ;
  • 오범환 (인하대학교 정보통신공학부 집적형광자기술연구센터(OPERA))
  • Published : 2008.06.30

Abstract

The design and analysis of a novel photonic crystal electro-optic modulator are presented in this paper. The device incorporates an electro-optic (EO) polymer slot waveguide into the center of a silicon photonic crystal waveguide. In this device, strong optical confinement in the EO polymer core and small group velocity from the photonic crystal structure provide a surprise enhancement of the EO effect.

실리콘과 전광 고분자 물질을 기반으로 한 새로운 광 결정 광변조기를 제안하고, 설계 및 검증을 수행하였다. 이는 실리콘 물질로 된 광 결정 도파로의 중심에 전광 고분자 물질로 된 슬롯 형태의 도파로를 삽입한 구조로 구성된다. 좁은 폭의 전광 고분자 슬롯도파로를 진행하는 광 신호는 주변의 광 결정 구조에 의해 매우 낮은 군속도를 갖게 될 뿐만 아니라, 전광 고분자 내로의 강한 광학적 구속력을 갖게 되어 광-물질 간의 활발한 상호작용과 매우 높은 전기-광학적 효과를 얻을 수 있다.

Keywords

References

  1. Richard A. Soref, “Electrooptical effects in silicon,” IEEE J. Quant. Elect., vol. QE-23, pp. 123-129, 1987 https://doi.org/10.1109/JQE.1987.1073206
  2. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett., vol. 56, pp. 1734-1736, 1990 https://doi.org/10.1063/1.103107
  3. F. Dell'Olio, V. M. N. Passaro, and F. D. Leonardis, “Simulation of a high speed interferometer optical modulator in polymer materials,” J. Comput. Elect., vol. 6, pp. 297-300, 2007 https://doi.org/10.1007/s10825-006-0119-1
  4. Richard A. Soref, “Electrooptical effects in silicon,” IEEE J. Quant. Elect., vol. QE-23, pp. 123-129, 1987 https://doi.org/10.1109/JQE.1987.1073206
  5. L. Liao, D. S. Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Frank, “High speed silicon Mach- Zehnder modulator,” Opt. Lett., vol. 3, 3129, 2005
  6. M. T. Tinker and J. B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett., vol. 86, pp. 221111, 2005 https://doi.org/10.1063/1.1944212
  7. S. J. Hwang, H. H. Yu, and J. Wang, “Electro-optical modulators formed by in-plane electric-field-poled polymer waveguides,” Opt. Communication, vol. 233, pp. 341, 2004 https://doi.org/10.1016/j.optcom.2004.01.059
  8. J. Liang, R. Levenson, Y. Chemla, and J. Zyss, “Thermally stable highly efficient electro-optic polymer modulator,” Electrets, (ISE 8), 8th International Symposium on, 1994
  9. M. H. Lee, H. J. Lee, S. G. Han, H.-Y. Kim, K. H. Kim, Y. H. Won, and S. Y. Kang, “Fabrication and characterization of an electro-optic polymer waveguide modulator for photonic applications,” Thin Solid Films, vol. 303, pp. 287-291, 1997 https://doi.org/10.1016/S0040-6090(97)00016-3
  10. A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polymer based polarization insensitive amplitude modulator: conception, technology and demonstration,” Synthetic Metals, vol. 115, pp. 21-27, 2000 https://doi.org/10.1016/S0379-6779(00)00297-6
  11. H. Rezig and G. Vitrant, “Feasibility of optically controlled integrated Mach.Zehnder device based on Azo dye-doped PMMA thin films,” Opt. Commun., vol. 200 pp. 261-269, 2001 https://doi.org/10.1016/S0030-4018(01)01623-6
  12. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B, vol. 44, pp. 8565, 1991 https://doi.org/10.1103/PhysRevB.44.8565
  13. L. Razzari, D. Trager, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. Andre, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett., vol. 86, pp. 231106, 2005 https://doi.org/10.1063/1.1944887
  14. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, and F. I. Baida, R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett., vol. 89, pp. 241110, 2006 https://doi.org/10.1063/1.2402946
  15. Y. R. Shen, “The Principles of Nonlinear Optics” (Wiley, New York, 1984)
  16. R. W. Boyd, “Nonlinear Optics” (Academic, New York, 2003) https://doi.org/10.1109/JQE.2004.838541
  17. Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, “Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes,” IEEE J. Quant. Elect., vol. 41, pp.76-84, 2005 https://doi.org/10.1109/JQE.2004.838541
  18. Eiji Miyai and Susumu Noda, “Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide,” J. Opt. Soc. Am. A, vol. 21, pp. 67-72, 2004 https://doi.org/10.1364/JOSAB.21.000067