DOI QR코드

DOI QR Code

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Choi, Don-Seong (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Do-Seok (Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Received : 2008.02.29
  • Accepted : 2008.05.23
  • Published : 2008.06.25

Abstract

We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.

Keywords

References

  1. T. Forster, Ann. Phys., 2, 55, 1948 https://doi.org/10.1002/andp.19484370105
  2. P. V. Cornish, and T. Ha, ACS Chem. Biol. 2, 53, 2007 https://doi.org/10.1021/cb600342a
  3. T. Ha, Biochemistry 43, 4055, 2004 https://doi.org/10.1021/bi049973s
  4. X. Zhuang, Annu. Rev. Biophys. Biomole. Strut. 34, 399, 2005 https://doi.org/10.1146/annurev.biophys.34.040204.144641
  5. G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Biophys. J. 74, 2702, 1998 https://doi.org/10.1016/S0006-3495(98)77976-7
  6. T. Mori, R. D. Vale, and M. Tomishige, Nature 450, 750, 2007 https://doi.org/10.1038/nature06346
  7. T. Ha, A. Y. Ting, J. Liang, W. B. Caldwell, A. A. Deniz, D. S. Chemla, P. G. Schultz, and S. Weiss, Proc. Natl. Acad. Sci. 96, 893, 1999 https://doi.org/10.1073/pnas.96.3.893
  8. T. Ha, D.S. Chemla, Th. Enderle, and S. Weiss, Appl. Phys. Lett. 70, 782, 1997 https://doi.org/10.1063/1.118259
  9. P. L. Southwick, L. A. Ernst, E. W. Tauriello, S. R. Parker, R. B. Mujumdar, S. R. Mujumdar, H. A. Clever, and A. S. Waggoner, Cytometry 11, 418, 1990 https://doi.org/10.1002/cyto.990110313
  10. M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, and T. Ha, Biophys. J. 86, 2530, 2004 https://doi.org/10.1016/S0006-3495(04)74308-8
  11. R. E. Benesch, and R. Benesch, Science 118, 447, 1953 https://doi.org/10.1126/science.118.3068.447
  12. I. Rasnik, S. McKinney, and T. Ha, Nat. Meth. 34, 891, 2006 https://doi.org/10.1038/nmeth934

Cited by

  1. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser vol.7, 2017, https://doi.org/10.1038/srep41480
  2. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope vol.2013, 2013, https://doi.org/10.1155/2013/890203
  3. Fluorescence Detection of Single DNA Molecules vol.25, pp.5, 2015, https://doi.org/10.1007/s10895-015-1615-0
  4. Glucose Prediction in the Interstitial Fluid Based on Infrared Absorption Spectroscopy Using Multi-component Analysis vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.279