Application of Hydrogen Peroxide on the Bacterial Control of Seaweed, Capsosiphon fulvescens (Mesaengi)

해조류 매생이(Capsosiphon fulvescens)의 저장기간 연장을 위한 과산화수소의 활용

  • Kim, Du-Woon (Division of Food Science and Aqualife Medicine Chonnam National University) ;
  • Kim, Mi-Jung (Division of Food Science and Aqualife Medicine Chonnam National University) ;
  • Shin, Tai-Sun (Division of Food Science and Aqualife Medicine Chonnam National University) ;
  • Kim, Sun-Jae (Division of Food Science and Aqualife Medicine Chonnam National University) ;
  • Jung, Bok-Mi (Division of Food Science and Aqualife Medicine Chonnam National University)
  • 김두운 (전남대학교 식품수산생명의학부) ;
  • 김미정 (전남대학교 식품수산생명의학부) ;
  • 신태선 (전남대학교 식품수산생명의학부) ;
  • 김선재 (전남대학교 식품수산생명의학부) ;
  • 정복미 (전남대학교 식품수산생명의학부)
  • Published : 2008.04.28

Abstract

Bacillus subtilis subsp. subtilis constitutes 90% of the total viable bacteria present on Capsosiphon fulvescens. We found that hydrogen peroxide (50 ppm) and NaOCl (50 ppm) were more effective than electrolyzed water (EW, 50ppm) against B. subtilis subsp. subtilis that was isolated from this seaweed. Relative to a control, 50 ppm hydrogen peroxide reduced the total viable population by $1.8{\pm}0.4$ log CFU/g, whereas 50 ppm EW increased the total viable population by $1.7{\pm}0.5$ log CFU/g. CFUs were evaluated following 30 days of storage at $4^{\circ}C$ using air- and vacuum-packaging. Samples treated with 50 ppm hydrogen peroxide and NaOCl showed a $1.6{\pm}0.1$-fold decrease in initial hardness ($7.9{\times}10^6dyne/cm^2$), while the samples treated with 50 ppm EW had a $2.1{\pm}0.1$-fold decrease in initial hardness ($7.9{\times}10^6dyne/cm^2$). Again, measurements were performed after storage at $4^{\circ}C$ for 20 days. This study indicates that B. subtilis subsp. subtilis is the most common contaminant in aerobically or anaerobically packaged seaweed and should therefore be the main target for quality control during long-term storage. Hydrogen peroxide and NaOCl are more effective than EW in inhibiting B. subtilis subsp. subtilis and in reducing total bacterial loads in air- and vacuum-packaged seaweed.

Bacillus subtilis subsp. subtilis는 녹조류인 매생이에서 분리되는 총 생균주 중에서 90%를 차지하고 있다. Bacillus subtilis subsp. subtilis에 대한 항미생물 활성을 50 ppm 수준에서 과산화수소와 NaOCl의 각각의 처리가 전해수 (50 ppm) 보다 유의적 수준에서 높았다. 매생이를 50 ppm의 과산화수소, NaOCl 그리고 전해수로 처리한 후 $4^{\circ}C$에서 30일간 일반포장 또는 진공포장에 의한 저장실험 후 총균수를 측정한 결과 과산화수소와 NaOCl를 처리시에는 초기 균수보다 $1.8{\pm}0.4$ log cfu/g 감소함을 보였고 전해수를 처리시에는 $1.7{\pm}0.5$ log cfu/g의 감소를 보였으며, 포장방법에 의한 총균수의 감소에는 영향이 없었다. 매생이를 50ppm의 과산화수수 NaOCl 그리고 전해수에 처리한 후 $4^{\circ}C$에서 20일간 저장실험 후 조직감 (경도)를 측정한 결과, 과산화수소와 NaOCl를 처리시에는 초기 경도 ($7.9{\times}10^6dyne/cm^2$)보다 $1.6{\pm}0.1$배 감소하였으나, 전해수 처리는 $2.1{\pm}0.1$배의 경도의 감소를 보였다. 결론적으로, 본 연구에서는 Bacillus subtilis subsp. subtilis 균주가 일반포장과 진공 포장된 제품에서 우점종으로 나타났고, 매생이의 장기 저온 저장 시 중요 관리요인으로 나타났으며, 이를 제어하는데 과산화수소와 NaOCl이 전해수보다 효율성이 높았다.

Keywords

References

  1. Bliding, C.A. (1963) A critical survey of European taxa in Ulvales. Opera Botanica., 8, 1-160
  2. McHugh, D.J. (2002) Prospects for seaweed production in developing countries. FAO Fisheries Circulars., C968, p.28
  3. Sonnenschein, A.L., Losick, R. and Hoch, J.A. (1993) Bacillus subtilis and other Gram-positive bacteria. Annual Meeting American Society for Microbiology. October 20-23, Washington, D.C., USA, p.987
  4. Lund, B.M. and Baird-Parker, T.C. (2000) The production of microbiologically safe and stable foods. Aspen Publishers, Gaithersberg, MD, USA, pp. 3-18
  5. Deza M.A., Araujo M. and Garrido, M.J. (2003) Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Lett. Appl. Microbiol., 37, 482-487 https://doi.org/10.1046/j.1472-765X.2003.01433.x
  6. Gould, G.W. (1996) Industry preservatives on the use of natural antimicrobials and inhibitors for food applications. J. Food Prot., Supplement, 82-86
  7. Juven, B.J. and Pierson, M.D. (1996) Antimicrobial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot., 59, 1233-1241 https://doi.org/10.4315/0362-028X-59.11.1233
  8. Sapers, G.M. and Simmon, G.F.(1998) Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technol., 52, 48-52
  9. Cadenas, E. (1989) Biochemistry of oxygen toxicity. Ann. Rev. Biochem., 58, 79-81 https://doi.org/10.1146/annurev.bi.58.070189.000455
  10. Farr, S.B. and Kogoma, T. (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev., 55, 562-564
  11. Stackebrandt, E. and Goebel, B.M. (1994) Taxonomic note: a place for DNA-DNA hybridization and 16S rRNA sequence analysis in the present species definition on bacteriology. Int. J. Syst. Bacteriol., 44, 846-849 https://doi.org/10.1099/00207713-44-4-846
  12. Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173, 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  13. Chun, J. (1995) Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis. University of Newcastle, Newcastle upon Tyne, UK
  14. Venkitanarayanan, K.S., Ezeike, G.O., Hung, Y.C. and Doyle, M.P.(1999) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water. J. Food Prot., 62, 857-860 https://doi.org/10.4315/0362-028X-62.8.857
  15. Huang, Y.R., Hsieh, H.S., Lin, S.Y., Lin, S.J., Hung, Y.C. and Hwang, D.F. (2006) Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food Control, 17, 987-993 https://doi.org/10.1016/j.foodcont.2005.07.003
  16. Aarestrup, F.M. and Hasman, H. (2004) Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet. Microbiol., 100, 83-89 https://doi.org/10.1016/j.vetmic.2004.01.013
  17. Nickel, J.C., Ruseska, I and Wright, J.B. (1985) Costerton JW. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobiol. Agents Chemother., 27, 619-624 https://doi.org/10.1128/AAC.27.4.619
  18. Ryu, J.H., Kim, H. and Beuchat, L.R. (2004) Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature. J. Food Prot., 67, 2123-2131 https://doi.org/10.4315/0362-028X-67.10.2123
  19. Halliwell, B. and Gutteridge, J. (1985) Free Radicals in Biology and Medicine. Clarendon Press. Oxford, p. 13-14
  20. Lillard H.S. and Thomson, J.E. (1983) Efficacy of hydrogen peroxide as a bacteriocide in poultry chiller water. J. Food Sci., 48, 125-126 https://doi.org/10.1111/j.1365-2621.1983.tb14804.x