Bacillus anthracis Spores Influence ATP Synthase Activity in Murine Macrophages

  • Seo, Gwi-Moon (Division of Molecular and Life Sciences, Hanyang University) ;
  • Jung, Kyoung-Hwa (Division of Molecular and Life Sciences, Hanyang University) ;
  • Kim, Seong-Joo (Division of Molecular and Life Sciences, Hanyang University) ;
  • Kim, Ji-Cheon (Division of Molecular and Life Sciences, Hanyang University) ;
  • Yoon, Jang-Won (Division of Molecular and Life Sciences, Hanyang University) ;
  • Oh, Kwang-Keun (Department of Bioprocess Technology, BioPolytechnic College) ;
  • Lee, Jung-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Chai, Young-Gyu (Division of Molecular and Life Sciences, Hanyang University)
  • Published : 2008.04.30

Abstract

Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be down regulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Chandra, H., P. K. Gupta, K. Sharma, A. R. Mattoo, S. K. Garg, W. N. Gade, R. Sirdeshmukh, K. Maithal, and Y. Singh. 2005. Proteome analysis of mouse macrophages treated with anthrax lethal toxin. Biochim. Biophys. Acta 1747: 151-159 https://doi.org/10.1016/j.bbapap.2004.10.012
  3. Dixon, T. C., A. A. Fadl, T. M. Koehler, J. A. Swanson, and P. C. Hanna. 2000. Early Bacillus anthracis-macrophage interactions: Intracellular survival and escape. Cell. Microbiol. 2: 453-463 https://doi.org/10.1046/j.1462-5822.2000.00067.x
  4. Galmiche, A., J. Rassow, A. Doye, S. Cagnol, J. C. Chambard, S. Contamin, V. de Thillot, I. Just, V. Ricci, E. Solcia, E. Van Obberqhen, and P. Boquet. 2000. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19: 6361-6370 https://doi.org/10.1093/emboj/19.23.6361
  5. Guidi-Rontani, C. 2002. The alveolar macrophage: The Trojan horse of Bacillus anthracis. Trends Microbiol. 10: 405-409 https://doi.org/10.1016/S0966-842X(02)02422-8
  6. Guidi-Rontani, C., M. Weber-Levy, E. Labruyere, and M. Mock. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31: 9-17 https://doi.org/10.1046/j.1365-2958.1999.01137.x
  7. Joiner, K. A. 1997. Membrane-protein traffic in pathogeninfected cells. J. Clin. Invest. 99: 1814-1817 https://doi.org/10.1172/JCI119347
  8. Kim, H. T., G. W. Seo, K. Y. Jung, S. J. Kim, J. C. Kim, K. G. Oh, B. S. Koo, and Y. G. Chai. 2007. Generation of a specific marker to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. J. Microbiol. Biotechnol. 17: 806- 811
  9. Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain again menadion-induced oxidative stress. J. Microbiol. Biotechnol. 17: 207-217
  10. Kovarova, H., P. Halada, P. Man, I. Golovliov, Z. Krocova, J. Spacek, S. Porkertova, and R. Necasova. 2002. Proteome study of Francisella tularensis live vaccine strain-containing phagosome in Bcg/Nramp1 congenic macrophages: Resistant allele contributes to permissive environment and susceptibility to infection. Proteomics 2: 85-93 https://doi.org/10.1002/1615-9861(200201)2:1<85::AID-PROT85>3.0.CO;2-S
  11. Kuhn, J. F., P. Hoerth, S. T. Hoehn, T. Preckel, and K. B. Tomer. 2006. Proteomics study of anthrax lethal toxin-treated murine macrophages. Electrophoresis 27: 1584-1597 https://doi.org/10.1002/elps.200500747
  12. Oakley, B. R., D. R. Kirsch, and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  13. Park, T. J., J. P. Park, G. M. Seo, Y. G. Chai, and S. Y. Lee. 2006. Rapid and accurate detection of Bacillus anthracis spores using peptide-quantum dot conjugates. J. Microbiol. Biotechnol. 16: 1713-1719
  14. Polla, B. S., D. Francois, S. Salvioli, G. Franceschi, C. Marsac, and A. Cossarizza. 1996. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. USA 93: 6458-6463
  15. Samali, A., J. Cai, B. Zhivotovsky, D. P. Jones, and S. Orrenius. 1999. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J. 18: 2040-2048 https://doi.org/10.1093/emboj/18.8.2040
  16. Sapra, R., S. P. Gaucher, J. S. Lachmann, G. M. Buffleben, G. S. Chirica, J. E. Comer, J. W. Peterson, A. K. Chopra, and A. K. Singh. 2006. Proteomic analyses of murine macrophages treated with Bacillus anthracis lethal toxin. Microb. Pathogen. 41: 157-167 https://doi.org/10.1016/j.micpath.2006.07.002
  17. Seo, G. M., S. J. Kim, and Y. G. Chai. 2004. Rapid profiling of the infection of Bacillus anthracis on human macrophages using SELDI-TOF mass spectroscopy. Biochem. Biophys. Res. Commun. 325: 1236-1239 https://doi.org/10.1016/j.bbrc.2004.10.146
  18. Seo, G. M., S. J. Kim, J. C. Kim, D. H. Nam, M. Y. Yoon, B. S. Koo, and Y. G. Chai. 2004. Targeting of Bacillus anthracis interaction factors for human macrophages using two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 322: 854-859 https://doi.org/10.1016/j.bbrc.2004.07.190
  19. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  20. Stephen, J. 1981. Anthrax toxin. Pharmacol. Therap. 12: 501- 513 https://doi.org/10.1016/0163-7258(81)90095-4
  21. Tonge, R., J. Shaw, B. Middleton, R. Rowlinson, S. Rayner, and J. Young. 2001. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1: 377-396 https://doi.org/10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6
  22. Willhite, D. C. and S. R. Blanke. 2004. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell. Microbiol. 6: 143- 154 https://doi.org/10.1046/j.1462-5822.2003.00347.x
  23. Willhite, D. C., T. L. Cover, and S. R. Blanke. 2003. Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 278: 48204-48209 https://doi.org/10.1074/jbc.M304131200
  24. Yamasaki, E., A. Wada, A. Kumatori, I. Nakagawa, J. Funao, M. Nakayama, J. Hisatsune, M. Kimura, J. Moss, and T. Hirayama. 2006. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J. Biol. Chem. 281: 11250-11259 https://doi.org/10.1074/jbc.M509404200