References
- Abramowicz, D. A. and C. R. Keese. 1989. Enzymatic transesterifications of carbonate in water-restricted environment. Biotechnol. Bioeng. 33: 149-156 https://doi.org/10.1002/bit.260330203
- Akoh, C. C., C. Cooper, and C. V. Nwosu. 1992. Lipase Gcatalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J. Am. Oil Chem. Soc. 69: 257-260 https://doi.org/10.1007/BF02635897
- Atkinson, P. J. 1991. Characterization of microemulsion based organogels. Ph.D. thesis, University of East Anglia, Norwich, U.K.
- Barzana, E., M. Karel, and A. M. Klibanov. 1989. Enzymatic oxidation of ethanol in the gaseous phase. Biotechnol. Bioeng. 34: 1178-1185 https://doi.org/10.1002/bit.260340908
- Berger, M., K. Laumen, and M. P. Schneider. 1992. Enzymatic esterification of glycerol. 1. Lipase-catalyzed synthesis of regiosomerically pure 1,3-sn-diacylglycerols. J. Am. Oil Chem. Soc. 69: 955-960 https://doi.org/10.1007/BF02541057
- Bianucci, M., M. Maestro, and P. Walde. 1990. Bell-shaped curves of enzyme activity in reverse micelles. A simplified model for hydrolytic reactions. Chem. Phys. 141: 273-283 https://doi.org/10.1016/0301-0104(90)87063-H
- Cao L. 2005. Carrier-bound Immobilized Enzymes: Principles, Application and Design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- Chang, G., T. Huang, and H. Hung. 1999. Reverse micelles as life-mimicking system. Proc. Natl. Sci. Counc. 24: 89-100
- Dandavate, V. and D. Madamwar. 2007. Novel approach for synthesis of ethyl isovalerate using surfactant coated lipase immobilized in microemulsion based organogels. Enzyme Microbial Technol. 41: 265-270 https://doi.org/10.1016/j.enzmictec.2007.01.019
- Dudal, Y. and R. Lortie 1995. Influence of water activity on the synthesis of triolein catalyzed by immobilized Mucor miehei lipase. Biotechnol. Bioeng. 45: 129-134 https://doi.org/10.1002/bit.260450206
-
Dyal, A., K. Loos, M. Noto, S. W. Chang, C. Spagnoli, and K. V. P. M. Shafi. 2003. Activity of Candida rugosa lipase immobilized on gamma-
$Fe_2O_3$ magnetic nanoparticles. J. Am. Chem. Soc. 125: 1684-1685 https://doi.org/10.1021/ja021223n - Gandhi, N. N., N. S. Patil, S. B. Sawant, and J. B. Joshi. 2000. Lipase-catalyzed esterification. Catal. Rev. Sci. Eng. 42: 439-480 https://doi.org/10.1081/CR-100101953
- Gitlesen, T., M. Bauer, and P. Adlercreutz. 1997. Adsorption of lipase on polypropylene powder. Biochim. Biophys. Acta 1345: 188-196 https://doi.org/10.1016/S0005-2760(96)00176-2
- Haering, G. and P. L. Luisi. 1986. Hydrocarbon gels from water-in-oil microemulsions. J. Phys. Chem. 90: 5892-5895 https://doi.org/10.1021/j100280a086
- Hedstrom, G., S. Backlund, and F. Eriksson. 2001. Influence of diffusion on the kinetics of an enzyme-catalyzed reaction in gelatin-based gels. J. Colloid Interface Sci. 239: 190-195 https://doi.org/10.1006/jcis.2001.7552
- Jenta, T. R. J., G. Batts, G. D. Rees, and B. H. Robinson. 1997. Biocatalysis using gelatin based microemulsion based organogels containing immobilized Chromobacterium viscosum lipase. Biotechnol. Bioeng. 53: 121-131 https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<121::AID-BIT1>3.0.CO;2-Q
- Nagayama, K., N. Yamasaki, and M. Imai. 2002. Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels. Biochem. Eng. J. 12: 231- 236 https://doi.org/10.1016/S1369-703X(02)00076-1
- Noor, I. N. J. and C. O. Ibrahim. 2000. Dependency of water availability on the esterifying activity of Candida cylindracea lipase in organic solvent. J. Microbiol. Biotechnol. 10: 99-102
- Okamoto, K., M. Yamamoto, Y. Otoshi, T. Semoto, M. Yano, K. Tanaka, and H. Kita. 1993. Pervaporation-aided esterification of oleic acid. J. Chem. Eng. Jpn. 26: 475-481 https://doi.org/10.1252/jcej.26.475
- Persson, M., E. Wehtje, and P. Adlercreutz. 2000. Immobilization of lipases by adsorption and deposition: High protein loading gives lower water activity optimum. Biotechnol. Lett. 22: 1571- 1575 https://doi.org/10.1023/A:1005689002238
- Rees, G. D., M. G. Nascimento, T. R. J. Jenta, and B. H. Robinson. 1991. Reverse enzyme synthesis in microemulsionbased organo-gels. Biochim. Biophys. Acta 1073: 493-501 https://doi.org/10.1016/0304-4165(91)90221-2
- Reetz, M., A. Zonta, and J. Simpelkamp. 1996. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 49: 527-534 https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<527::AID-BIT5>3.3.CO;2-E
- Soni, K. and D. Madamwar. 2000. Ester synthesis by lipase immobilized on silica and microemulsion based organogels (MBGs). Process Biochem. 36: 607-611 https://doi.org/10.1016/S0032-9592(00)00250-8
- Svensson, I., E. Wehtje, P. Adlercreutz, and B. Mattiasson. 1994. Effects of water activity on reaction rates and equilibrium positions in enzymatic esterifications. 44: 549-556 https://doi.org/10.1002/bit.260440502
- Verhaert, R. M. D., R. Hilhorst, M. Vermue, T. J. Schaatsma, and C. Veeger. 1991. Description of enzyme kinetics in reverse micelles. I. Theory. Eur. J. Biochem. 187: 59-65 https://doi.org/10.1111/j.1432-1033.1990.tb15277.x
- Wulfson, E. J. 1994. Lipases Their Structure, Biochemistry and Application, pp. 271-288. In P. Woolley and S. B. Petersen (eds.). Cambridge University Press, Cambridge
- Xin, S., Y. Qu, D.-H. Shin, and E.-K. Kim. 2001. Purification and characterization of lipase from Trichosporon sp. Y-11 and its use in ester synthesis of unsaturated fatty acids and alcohols. J. Microbiol. Biotechnol. 11: 951-956