Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls

  • Kim, Woo-Jung (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Kim, Sung-Min (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Lee, Yoon-Hee (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Kim, Hyun-Guell (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Kim, Hyung-Kwon (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Moon, Seong-Hoon (Biotechnology Policy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Suh, Hyun-Hyo (Department of Environmental Engineering, Jinju National University) ;
  • Jang, Ki-Hyo (Department of Food and Nutrition, Kangwon National University) ;
  • Park, Yong-Il (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
  • Published : 2008.04.30

Abstract

In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

Keywords

References

  1. Altschul, S. F., W. Miller, E. W. Meyers, and D. J. Limpman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bakunina, I. Y., O. I. Nedashkovshaia, S. A. Alekseeva, E. P. Ivanova, L. A. Romanenko, N. M. Gorshkova, V. V. Isakov, T. N. Zviagintseva, and V. V. Mikhailov. 2002. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiology 71: 41-47 https://doi.org/10.1023/A:1017994131769
  3. Balkwill, D., J. K. Fredrickson, and M. F. Romine. 2006. Sphingomonas and related genera, pp. 605-629. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.), The Prokaryotes, Vol. 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York, U.S.A.
  4. Barbosa, D. C., J. W. Bae, I. V. D. Weid, N. Vaisman, Y. D. Nam, H. W. Chang, Y. H. Park, and L. Seldin. 2006. Halobacillus blutaparonensis sp. nov., a moderately halophilic bacterium isolated from Blutaparon portulacoides roots in Brazil. J. Microbiol. Biotechnol. 16: 1862-1867
  5. Beress, A., O. Wassermann, T. Bruhn, and L. Beress. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J. Nat. Prod. 56: 478-488 https://doi.org/10.1021/np50094a005
  6. Berteau, O. and B. Mulloy. 2003. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharides. Glycobiology 13: 29R-40R https://doi.org/10.1093/glycob/cwg058
  7. Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Chevolot, L., A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-Vidal. 1999. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydr. Res. 319: 154-165 https://doi.org/10.1016/S0008-6215(99)00127-5
  10. Choi, W. S. and C. H. Hong. 2003. Rapid enumeration of Listeria monocytogenes in milk using competitive PCR. Int. J. Food Microbiol. 84: 79-85 https://doi.org/10.1016/S0168-1605(02)00401-4
  11. Daniel, R., O. Berteau, J. Jozefonvicz, and N. Goasdoue. 1999. Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydr. Res. 322: 291-297 https://doi.org/10.1016/S0008-6215(99)00223-2
  12. Descamps, V., S. Colin, M. Lahaye, M. Jam, C. Richard, P. Potin, R. Barbeyron, J. C. Yvin, and B. Kloareg. 2005. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar. Biotechnol. 8: 1-13
  13. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimeteric method for determination of sugars and related substances. 28: 350-356 https://doi.org/10.1021/ac60111a017
  14. Furukawa, S., T. Fujikawa, D. Koga, and A. Ide. 1992. Purification and some properties of exo-type fucoidanase from Vibrio sp. N-5. Biosci. Biotechnol. Biochem. 56: 1829-1834 https://doi.org/10.1271/bbb.56.1829
  15. Hahnenberger, R. and A. M. Jakobson. 1991. Antiangiogenic effect of sulphated glycosaminoglycans and polysaccharides in the chick embryo chorioallantoic membrane. Glycoconjugate J. 8: 350-353 https://doi.org/10.1007/BF00731347
  16. Hoshino, T., T. Hayashi, J. Hayashi, J. B. Lee, and U. Sankawa. 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol. Pharm. Bull. 21: 730- 734 https://doi.org/10.1248/bpb.21.730
  17. Kitamura, K., M. Matsuo, and T. Yasui. 1992. Enzymic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis. Biosci. Biotechnol. Biochem. 56: 490-494 https://doi.org/10.1271/bbb.56.490
  18. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175, In E. Stackerbrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York, NY, U.S.A.
  19. McCandless, E. L. and J. S. Craigie. 1979. Sulfated polysaccharides in red and brown algae. Annu. Rev. Plant Physiol. 30: 41-67 https://doi.org/10.1146/annurev.pp.30.060179.000353
  20. McClure, M. O., J. P. Moore, D. F. Blanc, P. Scotting, G. M. Cook, R. J. Keynes, J. N. Weber, D. Davies, and R. A. Weiss. 1992. Investigation into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res. Hum. Retroviruses 8: 19-26 https://doi.org/10.1089/aid.1992.8.19
  21. Millet J., S. C. Jouault, S. Mauray, J. Theveniaux, C. Sternberg, C. B. Vidal, and A. M. Fischer. 1999. Antithrombotic and anticoagulant activities of a low molecular weight fucoidan by the subcutaneous route. Thromb. Haemost. 81: 391-395 https://doi.org/10.1055/s-0037-1614484
  22. Mourao, P. A. S. and M. S. Pereira. 1999. Searching for alternatives to heparin: Sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 9: 225-232 https://doi.org/10.1016/S1050-1738(00)00032-3
  23. Nishino, T. and H. Nagumo. 1991. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydr. Res. 30: 535-539
  24. Ostergaard, C., R. V. Yieng-Kow, T. Benfield, N. Frimodt- Moller, F. Espersen, and J. D. Lundgren. 2000. Inhibition of leukocyte entry into the brain by the selectin blocker fucoidin decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental pneumococcal meningitis in rabbits. Infect. Immun. 68: 3153-3157 https://doi.org/10.1128/IAI.68.6.3153-3157.2000
  25. Park, Y. I., H. A. Wood, and Y. C. Lee. 1999. Monosaccharide compositions of Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) egg glycoproteins. Glycoconjugate J. 16: 629-638 https://doi.org/10.1023/A:1007029017400
  26. Patankar, S., S. Oehniger, T. Barnett, R. L. Williams, and G. F. Clark. 1993. A revised structure for fucoidan may explain some of its biological activities. J. Biol. Chem. 268: 21770-21776
  27. Riou, D., S. Colliec-Jouault, D. Pinczon du sel, S. Bosch, S. Siavoshian, V. LeBert, C. Tomasoni, C. Sinquin, P. Durand, and C. Roussakis. 1996. Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a nonsmall- cell bronchopulmonary carcinoma line. Anticancer Res. 16: 1213-1218
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  29. Sakai, T., H. Kimura, and I. Kato. 2002. A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Mar. Biotechnol. 4: 399-405 https://doi.org/10.1007/s10126-002-0032-y
  30. Sakai, T., H. Kimura, K. Kojima, K. Shimanaka, K. Ikai, and I. Kato. 2003. Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar. Biotechnol. 5: 70-78 https://doi.org/10.1007/s10126-002-0056-3
  31. Sakai, T., T. Kawai, and I. Kato. 2004. Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar. Biotechnol. 6: 335-346 https://doi.org/10.1007/s10126-003-0033-5
  32. Shibata, H., M. Iimuro, N. Uchiya, T. Kawamori, M. Nagaoka, S. Ueyama, S. Hashimoto, T. Yokokura, T. Sugimura, and K. Wakabayashi. 2003. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8: 59-65 https://doi.org/10.1046/j.1523-5378.2003.00124.x
  33. Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rDNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
  34. Silvestri L. J., R. E. Hurst, L. Simpson, and J. M. Settine. 1982. Analysis of sulfate in complex carbohydrates. Anal. Biochem. 123: 303-309 https://doi.org/10.1016/0003-2697(82)90450-X
  35. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
  36. Tako, M., M. Uehara, Y. Kawashima, I. Chinen, and F. Hongo. 1996. Isolation and identification of fucoidan from Okinawamozuku, Oyo Toshitsu Kagaku. J. Appl. Glycosci. 43: 143-148
  37. Tanaka, K. and S. Sorai. 1970. Hydrolysis of fucoidan by abalone liver $\alpha$-L-fucosidase. FEBS Lett. 9: 45-48 https://doi.org/10.1016/0014-5793(70)80307-6
  38. Thanassi, N. M. and H. Nakada. 1967. Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species. Arch. Biochem. Biophys. 118: 172-177 https://doi.org/10.1016/0003-9861(67)90294-9
  39. Uchida, M. 1995. Enzyme activities of marine bacteria involved in Laminaria-thallus decomposition and the resulting sugar release. Mar. Biol. 123: 639-644 https://doi.org/10.1007/BF00349242
  40. Urvantseva, A. M., I. Y. Bakunina, O. I. Nedashkovskaya, S. B. Kim, and T. N. Zvyagintseva. 2006. Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Biochem. Microbiol. 42: 484-491 https://doi.org/10.1134/S0003683806050073
  41. Weitz, J. L. 1997. Drug therapy: Low molecular weight heparins. N. Engl. J. Med. 337: 688-699 https://doi.org/10.1056/NEJM199709043371007
  42. Zhuang, C., H. Itoh, T. Mizuno, and H. Ito. 1995. Antitumor active fucoidan from the brown seaweed, Umitoranoo (Sargassum thunbergii). Biosci. Biotechnol. Biochem. 59: 563-567 https://doi.org/10.1271/bbb.59.563