Geochemical Aspects of Groundwater in Granite Area and the Origin of Fluoride with Emphasis on the Water-Rock Interaction

화강암지역 지하수 수질의 특징과 불소원인에 관한 물-암석반응 연구

  • Choo, Chang-Oh (Department of Earth & Environmental Sciences, Andong National University) ;
  • Kim, Jong-Tae (Department of Earth & Environmental Sciences, Andong National University) ;
  • Chung, Il-Moon (Water Resources & Environmental Research Division, Korea Institute of Construction Technology) ;
  • Kim, Nam-Won (Water Resources & Environmental Research Division, Korea Institute of Construction Technology) ;
  • Jeong, Gyo-Cheol (Department of Earth & Environmental Sciences, Andong National University)
  • 추창오 (안동대학교 지구환경과학과) ;
  • 김종태 (안동대학교 지구환경과학과) ;
  • 정일문 (한국건설기술연구원 수문연구실) ;
  • 김남원 (한국건설기술연구원 수문연구실) ;
  • 정교철 (안동대학교 지구환경과학과)
  • Published : 2008.03.31

Abstract

The purposes of this study are to understand characteristic water-rock interaction mechanisms of groundwater in the granite area of Geochang and Hapcheon areas, Gyeongnam-do and to clarify the origin of fluoride. The possible water-rock interaction process and the source of fluorine were studied using water chemistry, rock chemistry, mineralogy by XRD, and microtexture analysis by backscattered electron image of the electron microprobe. No clear relationships between F and hardness was found. But the fluorine content increases to some extent with pH and well depth. Preferential alteration due to water-rock interaction took place along edges or cleavage, or margins of biotite. Because biotite is highly subject to alteration in granite aquifer, fluorine in groundwater is originated from the leaching of biotite.

이 연구의 목적은 경남 북서부 화강암 분포지역 지하수의 지구화학적 특징 및 불소의 원인을 물-암석반응으로 이해하는 데 있다. 이를 위하여 지하수의 수질과 모암인 화강암의 주요 성분간의 부화경향성을 검토하였으며, 변질된 암석내 광물의 미세조직을 전자현미경으로 관찰하고 화학성분을 분석함으로써 물-암석반응에 따른 지하수내 불소의 용존 원인을 해석하였다. 불소함량과 경도를 비교한 결과 이들 간에는 뚜렷한 상관성은 나타나지 않는다. 그러나 불소함량과 pH는 대체로 서로 비례하는 경향을 보이며, 공의 심도가 깊어질수록 불소함량도 증가한다. 흑운모의 변질작용은 벽개를 따라 일어나거나, 결정의 가장자리 부분에서 가장 우세하게 일어난다. 물-암석반응에 의하여 흑운모가 쉽게 변질되므로 본 연구지역의 지하수내 불소의 주공급원이 될 가능성이 가장 높다.

Keywords

References

  1. 국립지질조사소, 1964, 한국지질도 거창도폭 1:250,000
  2. 국립지질조사소, 1964, 한국지질도 합천도폭 1:250,000
  3. 이종운, 전효택, 전용원, 1997, 국내 화강암질암 내 심부지 하수의 지구화학적 특성, 지하수환경학회지 4, 199-211
  4. 조병욱, 이병대, 이인호, 추창오, 2002, 국내 먹는 샘물의 특정 수질 항목에 대한 고찰, 대한지질공학회지, 12, 395-404
  5. 한국자원연구소, 2000, 먹는샘물 관리시스템 구축연구 (III), 환경부/한국자원연구소, 271p
  6. 황 정, 2001, 금산-완주지역 형석광화대내 석회암 및 화 강암지역 지하수의 불소분포특성 및 저감방안, 자원환경지질, 34, 105-117
  7. Abu Ruhkahm Y. and Khaled, A., 2004, Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan, Chemie der Erde 64, 171-181 https://doi.org/10.1016/j.chemer.2003.11.003
  8. Bank, D., Reimann, C., Royset, O,, Skarphagen, H. and Saether, O. M., 1995, Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters, Appl. Geochem., 10, 1-16 https://doi.org/10.1016/0883-2927(94)00046-9
  9. Carrillo-Rivera, J. J., Cardona, A., Edmundo, W. M., 2002, Use of abstraction regime and knowledge of hidrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico, Jour. Hydrology, 261, 24-47 https://doi.org/10.1016/S0022-1694(01)00566-2
  10. Chebotarev, I. I., 1955, Metamorphism of natural waters in the crust of weathering, Geochim. Cosmochim. Acta, 8, 22-48 https://doi.org/10.1016/0016-7037(55)90015-6
  11. Furrer, G., Zysset, M. and Schindler, P. W., 1993, Weathering kinetics of montmorillonite: Investigations in batch and mixed-flow reactions. In: Manning, D. A. C., Hall, P. L., Hughes, C. R.(eds) Geochemistry of Clay- Pore Fluid Interactions. Chapman and Hall, London, 1439-1441
  12. Kim, K. and Jeong, G. Y., 2005, Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula, Chemosphere, 58, 1399-1408 https://doi.org/10.1016/j.chemosphere.2004.10.002
  13. Knauss, K. G. and Wolery, T. J., 1989, Muscovite dissolution kinetics as a function of pH and time at $70^{\circ}C$, Geochim. Cosmochim. Acta, 53, 1494-1502
  14. Lisa, S. B., 1994, Factors influencing fluoride concentration in Norwegian lakes, Water, Air, Soil Pollut., 77, 151-167
  15. Nagy, K. L., 1995, Dissolution and precipitation kinetics of sheet silicates. In : A. F. White and S. L. Brantley (editors), Chemical Weathering Rates of Silicate Minerals. Reviews in Mineralogy, 31, 173-233
  16. Nordstrom, D. K., Ball, J. W., Donahoe., R. J. and Whittemore, D., 1989, Groundwater chemistry and waterrock interactions at Stripa, Geochim. Cosmochim. Acta, 53, 1727-1740 https://doi.org/10.1016/0016-7037(89)90294-9
  17. Saxena, V. X. and Ahmed, S., 2001, Dissolution of fluoride in groundwater: a water-rock interaction study, Environ. Geology, 40, 1084-1087 https://doi.org/10.1007/s002540100290
  18. Saxena, V. X. and Ahmed, S., 2003, Inferring the chemical parameters for the dissolution of fluoride in groundwater, Environ. Geology, 43, 731-736
  19. Subba Rao, N. and John Devadas, D. (2003) Fluoride incidence in groundwater in an area of Peninsular India, Environ. Geology, 45, 243-251 https://doi.org/10.1007/s00254-003-0873-3
  20. Stumm, W. and Morgan, J. J. 1996. Aquatic Chemistry. John Wiley and Sons, Inc. New York, 1022p
  21. Valenzuela-Vasquez, L., Ramirez-Hernandez, J., Reyes- Lopez, J, J., Sol-Uribe, A., Lazaro-Mancilla, O., 2006, The origin of fluoride in groundwater supply to Hermosillo city, Sonora, Mexico, Environ. Geol., 51, 17-27 https://doi.org/10.1007/s00254-006-0300-7
  22. White, A. F. and Brantley, S. L., 1995, Chemical weathering rates of silicate minerals: An overview, In: A. F. White and S. L. Brantley (editors), Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy, 31, 1-22