Effect of Indole-3-Carbinol on Inhibition of MMP Activity via MAPK Signaling Pathway in Human Prostate Cancer Cell Line, PC3 Cells

인돌이 인체 전립선암세포 PC3 Cell 전이 관련 Matrix Metalloproteinases (MMPs) 활성과 발현에 미치는 영향

  • Kim, Sung-Ok (Department of Pharmaceutical Science, University of Maryland, School of Pharmacy, Department of Biochemistry, Dongeui University, College of Oriental Medicine)
  • 김성옥 (메릴랜드대학교 약학대학 제약학교실, 동의대학교 한의과대학 생화학교실)
  • Published : 2008.04.30

Abstract

We examined the effect of indole-3-carbinol (I3C, $C_9H_9NO$), an autolysis product of a glucosinolate and a glucobrassicin in vegetables, on MMP-2, -9 activities and TIMP-l and -2 inductions via microtubule-associated protein kinase (MAPK) signaling pathway in prostate cancer cell line, PC3 cells. Our results indicated that I3C inhibited cell growth of PC3 cells in dose (0,50, 100 ,${\mu}M$) and time (0,24,48 and 72 h) dependent manners. Using gelatin zymography for MMP activity, we demonstrated that I3C significantly decrease MMP-2 and -9 activities in PC3 cells. We also observed that I3C decreased the proteins and mRNA levels of MMP-2 and -9 in PC3 cells as well. Inversely, expressions of TIMP-l and -2 protein and mRNA in PC3 cells were increased by I3C in a dose dependent manner. In another experiment, we showed that I3C inhibited PC3 cells invasiveness by using marigel invasion assay and we also found that I3C suppressed MMP transcriptional activity by MAPK signaling pathways. Taken together, our results suggest that I3C may contribute to the potential beneficial food component to prevent the cancer metastasis in prostate cancer cells. (KoreanJNutr2008; 41(3): 224~23I)

본 연구는 십자화과 채소의 섭취로 체내유용 물질인 인돌이 전립선암 세포 PC3 cell의 항전이 효과 기전에 미치는 영향에 대하여 알아보았다. 인돌은 전립선암 세포중식을 농도 의존적으로 억제하였으며 인돌에 의한 세포 사멸의 영향과 관계없이 MMP-2, -9의 활성과 전사수준 및 단백질 발현을 억제하였다. 역으로 MMP활성 억제 물질인 TIMP-1,-2의 발현이 인돌 첨가에 의해 증가하였다. $NF{-\kappa}B$의 upstream에 존재하는 MAPK signaling 유전자인 ERK1/2, p38, JNK 발현이 인돌처리로 인산화를 억제하였다. 그리고 전립선암 세포 PC3 침윤성이 인돌 처리 시 유의적으로 감소하였다. 결론적으로 인돌은 PC3 인체 전립선암 세포의 전이 과정을 MAPK phthway를 통한 MMP 활성과 발현 억제, TIMP 발현 증가로 암 세포 전이 억제를 하는 것 으로 나타나 암 전이 억제 식품으로 가능성을 제시한다.

Keywords

References

  1. National Cancer Center, 2002 Cancer statistics in Korea; 2002
  2. American Cancer Society, Cancer Facts and Figures 2002, Atlanta, GA: American Cancer Society, Inc.; 2002. p.6
  3. Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003; 99(1): 1-13 https://doi.org/10.1016/S0163-7258(03)00042-1
  4. Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE, Kucuk O. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer 2007; 59(1): 1-7 https://doi.org/10.1080/01635580701413934
  5. Von Low EC, Perabo FG, Siener R, Muller SC. Facts and fiction of phytotherapy for prostate cancer: a critical assessment of preclinical and clinical data. In Vivo 2007; 21(2): 189-204
  6. McCarty MF. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr Cancer Ther 2004; 3(4): 349-380 https://doi.org/10.1177/1534735404270757
  7. Loub WD, Wattenberg LW, Davis DW. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst 1975; 54(4): 985-988
  8. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon- induced neoplasia by naturally occurring indoles. Cancer Res 1978; 38(5): 1410-1413
  9. Brandi G, Paiardini M, Cervasi B, Fiorucci C, Filippone P, De Marco C, Zaffaroni N, Magnani MA. New indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res 2003; 63(14): 4028-4036
  10. Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH. Indole- 3-carbinol induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001; 20(23): 2927-2936 https://doi.org/10.1038/sj.onc.1204365
  11. Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 2001; 61(16): 6120- 6130
  12. Cover CM, Hsieh SJ, Tran SH, Hallden G, Kim GS, Bjeldanes LF, Firestone GL. Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J Biol Chem 1998; 273(7): 3838-3847 https://doi.org/10.1074/jbc.273.7.3838
  13. Exon JH, South EH, Magnuson BA, Hendrix K. Effects of indole- 3-carbinol on immune responses, aberrant crypt foci, and colonic crypt cell proliferation in rats. J Toxicol Environ Health A 2001; 62(7): 561-573 https://doi.org/10.1080/152873901300007842
  14. XuM, Bailey AC, Hernaez JF, Taoka CR, Schut HA, Dashwood RH. Protection by green tea, black tea, and indole-3-carbinol against 2-amino-3-methylimidazo[4,5-f] quinoline-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcino genesis 1996; 17(7): 1429-1434 https://doi.org/10.1093/carcin/17.7.1429
  15. el-Bayoumy K, Upadhyaya P, Desai DH, Amin S, Hoffmann D, Wynder EL. Effects of 1,4-phenyle-nebis-(methylene) selenocyanate, phenethyl isothiocyanate, indole-3-carbinol, and d-limonene individually and in combination on the tumorigenicity of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone in A/J mouse lung. Anticancer Res 1996; 16(5A): 2709-2712
  16. Chung FL, Morse MA, Eklind KI, Xu Y. Inhibition of tobaccospecific nitrosamine-induced lung tumorigenesis by compounds derived from cruciferous vegetables and green tea. Ann N Y Acad Sci 1993; 686: 186-201; discussion 201-202 https://doi.org/10.1111/j.1749-6632.1993.tb39174.x
  17. Morse MA, LaGreca SD, Amin SG, Chung FL. Effects of indole- 3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitros-amino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res 1990; 50(9): 2613-2617
  18. Zhang X, Malejka-Giganti D. Effects of treatment of rats with indole-3-carbinol on apoptosis in the mammary gland and mammary adenocarcinomas. Anticancer Res 2003; 23(3B): 2473-2479
  19. Jin L, Qi M, Chen DZ, Anderson A, Yang GY, Arbeit JM, Auborn KJ. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res 1999; 59(16): 3991-3997
  20. Kojima T, Tanaka T, Mori H. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3- carbinol. Cancer Res 1994; 54(6): 1446-1449
  21. Dashwood RH, Fong AT, Arbogast DN, Bjeldanes LF, Hendricks JD, Bailey GS. Anticarcinogenic activity of indole-3-carbinol acid products: ultra-sensitive bioassay by trout embryo microinjection. Cancer Res 1994; 54(13): 3617-3619
  22. Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S. Indole- 3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr 2000; 130(12) :2927- 2931 https://doi.org/10.1093/jn/130.12.2927
  23. Riby JE, Feng C, Chang YC, Schaldach CM, Firestone GL, Bjeldanes LF. The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathway. Biochemistry 2000; 39(5): 910-918 https://doi.org/10.1021/bi9919706
  24. Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 2005; 4(9): 1201-1215 https://doi.org/10.4161/cc.4.9.1993
  25. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003; 22(42): 6524-6536 https://doi.org/10.1038/sj.onc.1206757
  26. Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002; 99 (2): 157-166 https://doi.org/10.1002/ijc.10329
  27. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001; 7(1): 14-23 https://doi.org/10.1007/BF03032599
  28. Liabakk NB, Talbot I, Smith RA, Wilkinson K, Balkwill F. Matrix metalloprotease 2 (MMP-2) and matrixmetalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res 1996; 56(1): 190-196
  29. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 2002; 21(14): 2245-2252 https://doi.org/10.1038/sj.onc.1205291
  30. Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 2000; 275 (34): 26411-26415 https://doi.org/10.1074/jbc.M001270200
  31. Yu YY, Li Q, Zhu ZG. $NF-{\kappa}B$ as a molecular target in adjuvant therapy of gastrointestinal carcinomas. Eur J Surg Oncol 2005; 31(4): 386-392 https://doi.org/10.1016/j.ejso.2004.10.010
  32. Shehata M, Shehata M, Shehata F, Pater A. Dual apoptotic effect of Xrel3 c-Rel/NF-${\kappa}B$ homolog in human cervical cancer cells. Cell Biol Int 2004; 28(12): 895-904 https://doi.org/10.1016/j.cellbi.2004.09.002
  33. Fujita M, Goto K, Yoshida K, Okamura H, Morimoto H, Kito S. Okadaic acid stimulates expression of Fas receptor and Fas ligand by activation of nuclear factor kappa-B in human oral squamous carcinoma cells. Oral Oncol 2004; 40(2): 199-206 https://doi.org/10.1016/S1368-8375(03)00152-0
  34. Hou MF, Lin SB, Yuan SS, Tsai SM, Wu SH, Ou-Yang F. The clinical significance between activation of nuclear factor kappa B transcription factor and overexpression of HER-2/neu oncoprotein in Taiwanese patients with breast cancer. Clin Chim Acta 2003; 334(1-2): 137-144 https://doi.org/10.1016/S0009-8981(03)00196-7
  35. Philip S, Bulbule A, Kundu GC. Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type I matrix metalloproteinase in melanoma cells. J Biol Chem 2001; 276(48): 44926-44935 https://doi.org/10.1074/jbc.M103334200
  36. Keutgens A, Robert I, Viatour P, Chariot A. Deregulated $NF-{\kappa}B$ activity in haematological malignancies. Biochem Pharmacol 2006; 72(9): 1069-1080 https://doi.org/10.1016/j.bcp.2006.06.011
  37. Meng Q, Goldberg ID, Rosen EM, Fan S. Inhibitory effects of indole-3-carbinol on invasion and migration in human breast cancer cells. Breast Cancer Res Treat 2000; 63(2): 147-152 https://doi.org/10.1023/A:1006495824158
  38. Nwankwo JO. Anti-metastatic activities of all-trans retinoic acid, indole-3-carbinol and (+)-catechin in Dunning rat invasive prostate adenocarcinoma cells. Anticancer Res 2002; 22(6C): 4129- 4135
  39. Takada Y, Andreeff M, Aggarwal BB. Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 2005; 106(2): 641-649 https://doi.org/10.1182/blood-2004-12-4589
  40. Chinni SR, Sarkar FH. Akt inactivation is a key event in indole- 3-carbinol-induced apoptosis in PC-3 cells. Clin Cancer Res 2002; 8(4): 1228-1236
  41. Chinni SR, LiY, Upadhyay S, Koppolu PK, Sarkar FH. Indole-3- carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001; 20 (23): 2927-2936 https://doi.org/10.1038/sj.onc.1204365
  42. Duffy MJ. The biochemistry of metastasis. Adv Clin Chem 1996; 32: 135-166 https://doi.org/10.1016/S0065-2423(08)60427-8
  43. Suh J, Rabson AB. NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 2004; 91(1): 100-117 https://doi.org/10.1002/jcb.10729
  44. Madsen MA, Deryugina EI, Niessen S, Cravatt BF, Quigley JP. Activity-based protein pr ofiling implicates urokinase activation as a key step in human fibr osarcoma intr avasation. J Biol Chem 2006; 281(23): 15997-16005 https://doi.org/10.1074/jbc.M601223200
  45. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6(6): 449-458 https://doi.org/10.1038/nrc1886
  46. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25(1): 9-34 https://doi.org/10.1007/s10555-006-7886-9
  47. Kim SO, Choi YH. Effects of indole-3-carbinol on tight junction activity in hunman prostate cancer cells. Cancer Prev Res 2007; 12(4): 261-267
  48. Kim SO, Choi YH, Choe WK. Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29. Korean J Nutr 2008; 41(1): 1-9
  49. Leotlela PD, Wade MS, Duray PH, Rhode MJ, Brown HF, Rosenthal DT, DissanayakeSK, Earley R, Indig FE, Nickoloff BJ, Taub DD, Kallioniemi OP, Meltzer P, Morin PJ, Weeraratna AT. Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene 2007; 26 (26): 3846-3856 https://doi.org/10.1038/sj.onc.1210155
  50. Forster C, Kahles T, Kietz S, Drenckhahn D. Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J Physiol 2007; 580(Pt.3): 937-949 https://doi.org/10.1113/jphysiol.2007.129007
  51. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 2007; 22(5): E4
  52. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9(9): 726-735 https://doi.org/10.1096/fasebj.9.9.7601337
  53. Sebolt-Leopold JS. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 2000; 19(56): 6594-6599 https://doi.org/10.1038/sj.onc.1204083