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Abstract. The new better than used failure rate (NBUFR) ,Abouammoh and Ahmed 

(1988), and new better than average  failure rate (NBAFR) Loh (1984) classes of life 

distributions, have been considered  in the literature as natural weakenings of NBU 

(NWU) property.  The paper considers testing exponentiality  against strictly NBUFR 

(NBAFR) alternatives, or their duals, based on goodness of fit approach   that is 

possible in life testing problems and that it results in simpler procedures that are 

asymptotically equivalent or better than standard ones.  They may also have superior 

finite sample behavior.  The asymptotic normality are proved. Powers, Pitman 

asymptotic efficiency and critical points  are computed.   Dealing with censored data 

case also studied.  Practical applications of our tests in the medical sciences are present. 
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1. INTRODUCTION 

 
 Aging is characterized by a non negative random variable T with distribution function 

)()( tTPtF ≤=  and a survival function )()( tTPtF >= .  For practicalities, T is often 

assumed (but need not be )   continuous with pdf )()( tFtf ′= .  The most commonly 

applied concepts of positive aging are in terms of failure rate, 0),( ≥t  tr , of the 

distribution. In this paper we provide two more criterion describing positive aging in terms 

of the failure (hazard) rate. Formally the NBUFR and NBAFR and their  duals new worth 

than used failure rate (NWUFR) and new worth average failure rate (NWARFR) cf. 
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Loh(1984) and abouammoh and Ahmed (1988). These classes and their duals are defined 

as follows:  

 

Definition 1.1  An aging r.v. T ≥ 0 is said to have NBUFR (NWUFR )  if ),()()0( trr ≥≤  

for all 0≥t  where )(/)()( tFtftr = is the failure rate at tT =  and 0)0( >f .  i.e the 

failure rate of a new system is less (greater) than the failure rate of a used system. 

      

Definition 2.2  An aging r.v. T ≥ 0 is said to have NBAFR (NWAFR) if                  

                                                 0,)()()0(
0

1 ≥≥≤ ∫− t duurtr
t 

 
. 

Equivalently )(ln)()0( 1 tFtr −−≥≤ ,  i.e the failure rate of a new system is less 

(greater) than the average failure rate of a used system. 

 A significant part of life testing problems is concerned with testing whether a life 

distribution belongs to a non parametric family of aging. See for example For testing 

against NBUE, NBUFR and NBAFR classes, we refer to Klefsjo (1981 and 1982), 

Deshpande et al. (1986), Abouammoh and Ahmed (1988), Loh (1984) and Hendi, 

Alnachawati, and AL-Graian (2000).  Mahmoud and Abdul Alim (2002, 2003 a and 2003 

b ) studied testing exponentiality against new better than used renwel failure rate 

(NBURFR) and new better average renwel failure rate (NBARFR)  based  on a U-statistic 

for censored and non censored data.  

We often encounter testing 0H : A life distribution is exponential versus 1H : A life 

distribution belongs to an aging family.  In contrast to goodness of fit problems, where the 

test statistic is based on a measure of departure from 0H  that depends on both 0H  

and 1H , most tests in life testing settings, including those referenced above, do not use the 

null distribution in devising the test statistics, this resulted in test statistics that are often 

difficult to work with and require programming to calculated. The current work that 

incorporating 0H  into the measure of departure from it can lead to simpler test statistics 

that are easy to work with, are asymptotically equivalent in distribution to those based on 

another approaches and may have equal or higher efficiency than the classical procedures. 

They also may have better finite sample behaviors. Ahmed et al (2001) introduced the 

previous method with major life distributions classes which are increasing failure rate 

(IFR), new better than used  (NBU), new better than used in convex ordering (NBUC), 

new better than used in expectation (NBUE) and harmonic new better than used in 

expectation (HNBUE).  Mahmoud and Abdul Alim (2006), A used this method with 

testing hypothesis with new better than used renewal failure rate NBURFR and new better 

average renewal failure rate NBARFR. 
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  In the following sections we derive four nonparametric tests for testing 

exponentiality against NBUFR (NWUFR) and NBAFR (NWAFR) properties respectively 

using goodness of fit approach. 

 

 

2. TESTING AGAINST NBUFR (NWUFR) CLASS 

   
In this Section, a new test statistic is proposed for testing exponentiality versus new 

better than used failure rate (NBUFR) alternatives. This test statistic, which is based on U  

statistic of  a random  sample, is readily applied in the case of small sample as well as large 

sample. Also, this test statistic is simpler and more efficient than the test statistic of Hendi 

et al (2000). Also the comparisons of NBUFR tests in the sense of asymptotic efficiency 

(AE)  and powers are given in Section 3. 

For testing the hypothesis 0H : F is exponential against )1(
1H : F belongs to NBUFR 

class and not exponential, we propose the following measure of departure 

)()0()()()( 0
0

0
0

)1(
xdFfxFxdFxf

  

  

  

 
F ∫∫

∞∞
−=δ , 

where  t
etF
−=)(0 . 

Lemma 2.1. 

    Let X be a random variable with distribution function F.  Then  

( ) ( ) ( )[ ]XX

F eEfeE −− −−= 10)1(δ  

Proof. 

Note that 

                     dxefxFdxexf xx

F

−∞−∞

∫∫ −=
  

0  

  

0 

)1( )0()()(δ  

                            = IeE
x −− )( , say. 

Now since by integration by parts 

)(1)(
0

x
  

  

x eEdxexFI −∞ − −== ∫ , 

then the lemma completely proved.  

. 

 Based on a random sample nXXXX ,...,, 321 from a distribution F   we wish to test 

0H : against )1(
1H . Clearly, )1(

Fδ =0 under 0H ,   while it is positive under )1(
1H .  Thus we 

may be testing on its estimate.  By using the empirical form of )0(f  and terms of then the 

estimate of )1(
Fδ is given by 

)1(ˆ
nF

δ ( )( )∑
=

−− −+=
n

i

X
n

X ii efe
n 1

1)0(ˆ1
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where  
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∑
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is an estimated pdf at 0 based on the kernel method with the bandwidth h and )(uK  be 
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a known probability density function, symmetric and bounded with 0 mean and variance 

02 >kσ , cf. Hardle (1991). Here we set 2/2

2

1
)( ueuK −=

π
, which is the standard normal 

density. Further it is known that, cf. Hardle (1991),  

),()0()0(ˆ hoffE +=  

and 

))},()0((||||){()0(())0(ˆvar( 2
2

11 hofKhhofnf +−+= −− as 0→h . 

By defining  

( ) ( ) 
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and defining the symmetric kernel 

∑=
R

ii XXXX ),(
!2

1
),( 2121 φψ , 

where, the summation over all arrangements of 21 , ii XX , then 
)1(ˆ
nF

δ  is equivalent to U-

statistic 

.),(

2

1 ∑








=

R

jin XX
n

U ψ  

The following theorem studied the large sample distribution of
)1(ˆ
nF

δ . 

Theorem 2.1. 

The asymptotic distribution of ( ))1()1(ˆ
FFn

n δδ −  is normal with mean 0 and variance .2σ   

Under 0H , The asymptotic distribution is normal with mean zero and variance .20σ  

Where, 

 ( )( ) ( )






 −+






 += ∫

∞ −− 0201)(
0

2 ffxdFeeVar
 

  

XXσ and 
3

12
0 =σ . 

Proof. 

Using standard U-statistics theory, cf- Lee(1990), we need only the asymptotic 

variance which is as follows: 

Recall the definition of  ( )21, XXφ , then  the asymptotic variance is given by 

[ ] [ ]{ }221121

2 |),(|),( XXXEXXXEVar φφσ += , 

but 
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Similarly,  
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then 2σ  obtained. 

Also, under 0H  

{ } 3/1144 22
0 =+−= −− XX eeEσ . 

       

     To perform the above test, calculate )1(ˆ3
nF

nδ and rejected 0H if this value exceed 

αZ the standard normal variate. 

 

 

3. ASYMPTOTIC EFFICIENCY AND POWERS   FOR )1(ˆ
nF

δ  

 

In this section the asymptotic efficiencies of 
)1(ˆ
nF

δ for LFR, Weibull and Makeham 

families.   

Let nT1 , nT2  be two test statistics for testing  { } 2/1

0 ,: −+=∈ cnFFH nn
θθθθ with c 

is an arbitrary constant, then the asymptotic efficiency of nT1  relative to nT2  is defined by  

[ ] [ ])(/)(/)(/)(),( 0
2

0

2

20
2

0

2

121 21
θσθµθσθµ ′′=nn T Te . 

where  

( )
0

lim)( 0
'

θθθ
θµ

→
∞→









∂
∂

= in
n

i TE , 

and  

( )in
n

i TVar00
2 lim)(

∞→
=θσ , i=1,2, 

is the null variance. 

Carrying out the efficacy calculations for the linear failure rate  Weibull , and 

Makeham families we get the following results.  

In order to evaluate the asymptotic efficacy of 
)1(ˆ
nF

δ , we shall use  the definition of 

)1(

F
δ then we have   

( ) ( ) ( ){ }∫∫
∞ −∞ − −=
  

0  

   

0  

)1( )0(3ˆ dxexFfdxexfAE xx

Fn θθδ . 

The following results are the ARE for LFR, Weibull and Makeham families 

LFR family, =)(tF Exp(-t-θ )2/2t 0 0, t, ≥> θ  
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( ) 4/33ˆ
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2)1( =
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∞ −   

  

x

F
dxxeAE

n
δ . 

Weibull family, 0 0,t etF t ≥>= θ
θ

,)( -  

( ) ( ) 323414.0)ln1(3ˆ
0

2)3( =






 += ∫

∞ −   

  

x

F
dxxeAE

n
δ . 

Weibull family, for Hendi et al (2000) 

( ) ( )[ ] 313518.0ln)(3ˆ
0

22)3( =






 −+−−= ∫

∞ −−−−−   

  

xxxxx

F
dxeexxeeeAE

n
δ . 

 

Similarly , 

Makeham family =)(tF  Exp(-t- θ (t+
θ-e -1 ) 

( ) ( ){ } 6/33ˆ
   

0  

32)1( =−= ∫
∞ −− dxeeAE xx

Fn
δ . 

It is also easy to see that the above test is consistent and unbiased.   For samples 

5(1)50 and using 5000 replications, Mont Carlo null distribution critical values for )1(ˆ
nF

δ test 

and powers for the mentioned three alternatives are given as in Tables A.1 , appendix, and 

Table A.2.   

Now, we consider here dealing with Censored Data  

Let )()3()2()1( ,...,,, nXXXX be the order statistics of nXXXX ,...,, 321 .  Let 

nYYYY ...,,, 321 be independent and identical distributed each with distribution function G.  

iY  is the censoring time associated with iT . We can only observe 

),( 11 δZ , ),( 22 δZ , ),( 33 δZ ,…, ),( nnZ δ where ),min( iii YXZ = , 

 and  





≥

≤
=≤=

censored    is   X  is   that YX  if    

censored not is X  is that YX   if   
YXI

i ii

i ii

iii
,

,

0

1
)(δ  

Notice that  nZZZZ ,...,,, 321 are independent and identical distributed with some 

distribution function F.  Also nδδδδ ,...,,, 321   contain the censoring information.   

     Here, a test statistic proposed to test 0H versus )1(
1H with randomly right censored 

samples.  In the censoring model, if we use  the pairs ),( iiZ δ , i=1,2,3,…,n,  in the   

Kaplan and Meier (1958) estimator and also  by using the following variable kernel 

estimator of the hazard rate in the censored case 

( ) ( )( )[ ]∑
=

−+−=
n

i

kii

k

RZtKin
R

tr
1

2/)()1/(
2

1
)(ˆ δ , Tanner(1983) 

where 

kR : distance between time t and its 
thk nearst failure time 

k : gilb ( bn ), 12/1 << b   

(.)k : a function of bounded variation with compact support on the interval [-1,1]
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1+− in   is the number of items at risk at )(iZt = , and is )(. )1( −in ZFn . 

Tanner (1983) proved the strong consistency of )(tr . 

Then the proposed test statistic is  

                          ( )∫
∞

−=
 

 
nnn

c

F
tFdrtr

n 0
0

)1( )()0(ˆ)(ˆδ̂                       

For computation use,  
)1(ˆc

Fn
δ can be written in the following form  

( ) ( ))1()()(
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then the final emperical form of  
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δ is given by 
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R
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inR

i

n

δ
δ ,                  (3.1) 

 

where 1−−= ii ZZdx , and ( ) ( )1/ +−−= knknCk .  

Table  A.2 in appendix gives the critical values of statistic ()ˆ c
Fn
δ   for sample sizes 

5(1),50 and 81.  Table 3.1, 3.2 and 3.3 show that the test has very good powers for all 

alternatives. 

 

Table 3.1. Power calculations for samples from LFR 

Sample 

size 

θ  

0.25 0.5 0.75 1 1.5 2,0 

10 0.984 0.997 0.999 1.000 1.000 1.000 

20 0.989 0.998 1.000 1.000 1.000 1.000 

30 0.991 1.000 1.000 1.000 1.000 1.000 

 

Table  3.2. Power calculations for samples from Pareto 

Sample 

size 

θ  

0.2

5 

0

.5 

0

.75 

1 1.

5 

2,0 

10 0.9

99 

1

.000 

1

.000 

1

.000 

1.

000 

1.000 

20 1.0

00 

1

.000 

1

.000 

1

.000 

1.

000 

1.000 

30 1.0

00 

1

.000 

1

.000 

1

.000 

1.

000 

1.000 

 

Table 3.3. Power calculations for samples from weibull 

Sample 

size 

θ  

0.25 0.5 0.75 1 1.5 2.0 

10 0.994   0.981 0.961 0.947 0.984 1 
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20 1.00 0.994   0.965 0.944 0.978 1 

30 1.00 0.998   0.985 0.953 0.989 0.999 

 

 

4. TESTING AGAINST NBAFR CLASS 

 

For testing the hypothesis 0H : F is Exponential against  
)2(

1H : F is NBAFR and not 

exponential , we  propose the following measure departure 

∫∫
∞−∞

−=
  

  

f(0) x
  

  
F

xdFuFxdFe
0

00
0

)2( )()()(δ . 

 

Lemma 4.1.   Let X be a random variable has NBAFR property with distribution function 

F.  Then  

( ) ( )( )XXf

F
eEeE −− −−= 1)0()2(δ . 

Proof. 

Since  

)(1)(
0

)2( x
  

  

x

F
eEduexF −

∞
− −== ∫δ  

So as in lemma 2.1. the result follows. 

Based on a random sample nXXXX ,...,, 321 from a distribution F,    the empirical 

form of )2(

F
δ is given by 

                                 )2(ˆ
nF

δ ( )∑
=

−− −+=
n

i

XfX ini ee
n 1

)0(ˆ
1

1
,                                 (4.1) 

 

By taking 

1)(
)0(ˆ

−+= −− Xf X
eeX nφ , 

we  prove the following theorem to obtain the asymptotic properties of 
)2(

Fδ  . 

 

Theorem 4.1. 

As ∞→n , ( ))2()2(ˆ
FFn

n δδ −  is asymptotically normal with mean 0 and variance 

2σ  that is as in (5).  Under 0H ,  =2
0σ 1/3. 

Proof. 

It is straightforward by noting that 
)2(ˆ

nF
δ  is just an average, thus using the central 

limit theorem the result follows.  For the variance
2σ , it can be shown by 

                                       [ ]XXf
eeVar
−− +−= 1

)0(2σ ,                                    (4.2) 

which under 0H , becomes  

=2
0σ [ ] 





 −− 2

12 XeE =1/3. 
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To perform the above test, calculate 
)2(ˆ3

nF
 n δ and reject 0H if this value exceeds 

Zα the standard normal variate.  Table A.3 in appendix gives the critical values of 

)2(ˆ
nF

δ test for sample sizes 5(1),50.  The powers of the statistic 
)2(ˆ

nF
δ  for LFR, Weibull 

and Pareto families as alternatives can be shown in Table A.3 for sample sizes 

10,20,30 and θ  values .25,.5,.75,1.0,1.5,2.0.  Next, the efficacies  of statistic in (4.1)  

are calculated for the  LFR, Makeham and Weibull families alternatives as follows : 

Since 

   ( ) ( )






 ′−= ∫

∞ −  

  

x

F
dxexFAE

n 0

)2(
3ˆ

θδ , 

then for  

LFR family, 

( )
8

3

22

3ˆ
0

2
2

)2( =








= ∫
∞ −  

  

t

F
dte

t
AE

n
δ . 

Weibull family, 

 

( ) =






= ∫

∞ −  

  

t

F
tdteAE

n 0

2)2(
ln3δ̂ 0.05019. 

Similarly  

Makeham family 

( ) ( ) 12/33ˆ
0

232)2( =






 −+−= ∫

∞ −−−  

  

ttt

F
dteeteAE

n
δ . 

A full powers obtained for test from Tables 4.1, 4.2 and 4.3. 

In the following, we derive an expression for testing exponentiality against 

NBAFR properties with randomly right censored data as follows: 

The proposed test here is depend on the following departure taking into 

consideration incorporting 0H into the measure of departure it can lead to the following 

simpler test statistic  by using Kaplan  Meier estimator of )(xF  and Tanner failure rate 

estimatore in the case of randomly censored data. 

)2(ˆc
Fn
δ ( ) )()( 0

0

)0( tdFtFe nn

tf∫
∞ − −= .           

For computation use,  
)2(ˆ c

Fn
δ  can be written as follows: 

( ) ( )   ZZe Ce ii

Z
n

i

k

i

k

rZc

F
iki

n
.ˆ

)1()(

1

)(

1

1

)0(ˆ)2( )()()(

−
−

=

−

=

− −





∏−=∑ δδ                   (4.3) 

 

Table 4.1. Power calculations for samples from LFR 

Sample 

size 

θ  

0.25 0.5 0.75 1.0 1.5 2.0 

10 .985    .998   .999 1.000 1.000 1.000 

20     .994   .1000   1.000 1.000 1.000 1.000 

30   .997   1.000   1.000 1.000 1.000 1.000 
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Table 4.2. Power calculations for samples from pareto 

Sample size 
θ  

0.25 0.5 0.75 1.0 1.5 2.0 

10 0.985 1.000 1.000 1.000 1.000 1.000 

20 0.999 1.000 1.000 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 

 

Table 4.3. Power calculations for samples from weibull 

Sample 

size 

θ  

0.25 0.5 0.75 1.0 1.5 2.0 

10 0.722   0.780 0.804 0.805 0.781 0.685 

20 0.731 0.766   0.790 0.770 0.633 0.403 

30 0.752 0.787   0.791 0.771 0.561 0.246 

 

Table A.4 in appendix gives the percentiles of 
)2(ˆ c

Fn
δ  for sample sizes 5(1)50,80,81,86. 

 

 

5. APPLICATIONS 

 

The following data consists of 86 survival times (in months) with 23 right censored 

lung cancer patients from Pena  (2002): 

The whole life times (non-censored data) : 

0.99 1.28 1.77 1.97 2.17 2.63 2.66 2.76 2.79 2.86 

2.99 3.06 3.15 3.45 3.71 3.75 3.81 4.11 4.27 4.34 

4.4 4.63 4.73 4.93 4.93 5.03 5.16 5.17 5.49 5.68 

5.72 5.85 5.98 8.15 8.26 8.48 8.61 9.46 9.53 10.05 

10.15 10.94 10.94 11.24 11.63 12.26 12.65 12.78 13.18 13.47 

13.96 14.88 15.05 15.31 16.13 16.46 17.45 17.61 18.2 18.37 

19.06 20.7 22.54 23.36       

 

The ordered censored observations are: 

11.04 13.53 14.23 14.65 14.91 15.47 16.49 17.05 17.28 

17.88 17.97 18.83 19.55 19.58 19.75 19.78 19.95 20.04 

20.24 20.73 21.55 21.98      

 

If we  deal with a complete 64 survival times and computing the values of statistics 

(2.1)  and (4.1), we get the following conclusions: 
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1. The value of statistic 
)1(ˆ
nF

δ  gives the value 0.02595778 which is less than the 

critical value of the Table A.1 in appendix.  Then these data is exponential.  

2. The value of 
)2(ˆ

nF
δ  = 0.01338637 which leads to reject 1H . 

If we deal with all data: 

3. The value of statistic (3.1) we get the value of departure is 0.007760483 that leads 

to reject exponentiality hypothesis i.e censored data are NBUFR data. 

4. From statistic (4.3) the value of departure is 0.01739595that leads to  reject 0H . 
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APPENDIX  

Table A.1. Critical values of statistic (1) 
n 
5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

20 

21 
22 

23 

24 
25 

26 

27 
28 

29 

30 
31 

32 

33 
34 

35 

36 
37 

38 

39 
40 

41 

42 
43 

44 

45 
46 

47 

48 
49 

50 

 

.01 
.1293 

.1483 

.1524 

.1696 

.1759 
.1822 

.1899 

.1955 

.2007 

.2025 

.2090 

.2112 

.2189 

.2168 

.2243 

.2238 

.2265 

.2276 

.2291 

.2317 

.2338 

.2375 

.2375 

.2404 

.2372 

.2398 

.2431 

.2441 

.2455 

.2470 

.2461 

.2483 

.2466 

.2507 

.2490 

.2514 

.2489 

.2513 

.2540 

.2531 

.2527 

.2535 

.2554 

.2538 

.2591 

.2566 

 

.05 
.1927 

.2003 

.2074 

.2179 

.2225 
.2258 

.2312 

.2367 

.2366 

.2414 

.2446 

.2461 

.2496 

.2478 

.2547 

.2572 

.2557 

.2570 

.2572 

.2592 

.2616 

.2629 

.2627 

.2645 

.2620 

.2646 

.2672 

.2666 

.2663 

.2700 

.2702 

.2704 

.2683 

.2700 

.2706 

.2716 

.2723 

.2728 

.2741 

.2741 

.2730 

.2742 

.2745 

.2746 

.2764 

.2758 

 

.10 
.2262 

.2335 

.2349 

.2450 

.2491 
.2522 

.2566 

.2577 

.2594 

.2621 

.2647 

.2667 

.2666 

.2682 

.2717 

.2722 

.2731 

.2726 

.2725 

.2759 

.2760 

.2783 

.2784 

.2786 

.2764 

.2782 

.2812 

.2795 

.2796 

.2817 

.2834 

.2814 

.2814 

.2831 

.2832 

.2822 

.2844 

.2839 

.2847 

.2849 

.2845 

.2848 

.2850 

.2850 

.2856 

.2850 

 

.90 
.5000 

.4826 

.4654 

.4567 

.4474 
.4437 

.4345 

.4298 

.4232 

.4214 

.4171 

.4143 

.4093 

.4074 

.4022 

.4001 

.4000 

.3980 

.3965 

.3918 

.3927 

.3902 

.3864 

.3866 

.3844 

.3829 

.3820 

.3787 

.3772 

.3771 

.3757 

.3776 

.3746 

.3740 

.3714 

.3704 

.3713 

.3694 

.3692 

.3681 

.3664 

.3652 

.3667 

.3650 

.3653 

.3628 

 

.95 
.5355 

.5206 

.5036 

.4925 

.4754 
.4739 

.4625 

.4556 

.4483 

.4453 

.4384 

.4361 

.4308 

.4277 

.4238 

.4214 

.4218 

.4189 

.4155 

.4108 

.4111 

.4082 

.4049 

.4040 

.4012 

.3993 

.3975 

.3952 

.3926 

.3937 

.3907 

.3923 

.3896 

.3884 

.3841 

.3842 

.3836 

.3839 

.3831 

.3799 

.3790 

.3775 

.3796 

.3771 

.3771 

.3752 

 

.98 
.5757 

.5605 

.5422 

.5258 

.5114 
.5077 

.4916 

.4883 

.4778 

.4738 

.4657 

.4636 

.4569 

.4498 

.4469 

.4469 

.4444 

.4429 

.4365 

.4326 

.4308 

.4284 

.4267 

.4228 

.4205 

.4181 

.4138 

.4140 

.4121 

.4101 

.4101 

.4092 

.4068 

.4041 

.4009 

.4009 

.3975 

.3983 

.3978 

.3952 

.3937 

.3908 

.3941 

.3908 

.3904 

.3923 

 

.99 
.6017 

.5802 

.5613 

.5508 

.5355 
.5317 

.5166 

.5069 

.4967 

.4909 

.4807 

.4855 

.4750 

.4699 

.4652 

.4634 

.4591 

.4567 

.4490 

.4467 

.4475 

.4406 

.4397 

.4368 

.4338 

.4308 

.4280 

.4270 

.4270 

.4203 

.4220 

.4210 

.4200 

.4185 

.4143 

.4106 

.4086 

.4086 

.4091 

.4068 

.4045 

.4033 

.4060 

.4010 

.3985 

.4015 
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Table A.2. Critical values of statistic (3) 

 

    

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

31 

32 
33 

34 

35 
36 

37 

38 
39 

40 

41 
42 

43 

44 
45 

46 

47 
48 

49 
50 

.01 

-5.1708 
-2.6302 

-2.2517 

-1.2125 
-1.7961 

-1.4331 

-1.6638 
-1.4024 

-1.7678 

-1.2281 
-1.4224 

-1.4755 

-2.5910 
-1.8175 

-1.4888 

-1.4001 
-2.1683 

-1.6312 

-1.5535 
-1.6285 

-1.9977 

-1.8270 
-1.7385 

-1.5856 

-1.9698 
-2.2536 

-1.5805 

-2.4034 
-2.6496 

-1.9422 

-2.9604 
-2.5989 

-1.9711 

-2.4134 
-2.1602 

-2.0472 

-2.1584 
-1.6635 

-2.6654 

-2.3692 
-2.1147 

-1.9614 

-2.5053 
-2.0045 

-2.1464 
-2.2291 

.05 

-1.2228 
-.8037 

-.9135 

-.4836 
-.4932 

-.5886 

-.5811 
-.4502 

-.6122 

-.6337 
-.6558 

-.6360 

-.8841 
-.7222 

-.6904 

-.6688 
-.7806 

-.7239 

-.7084 
-.7125 

-.8042 

-.7560 
-.7839 

-.7794 

-.7706 
-.8464 

-.7035 

-.8559 
-.7500 

-.7975 

-.9205 
-.9839 

-.8871 

-.9364 
-.9833 

-.9333 

-1.0605 
-.8941 

-.9710 

-.8707 
-.8938 

-.9458 

-.9667 
-.8824 

-.9696 
-.9624 

.10 

-.7428 
-.4245 

-.5256 

-.2597 
-.2892 

-.3233 

-.3422 
-.2685 

-.3294 

-.3869 
-.4236 

-.3944 

-.5205 
-.4490 

-.4399 

-.4138 
-.4661 

-.4570 

-.4642 
-.4570 

-.5002 

-.4744 
-.5105 

-.4903 

-.4928 
-.5551 

-.4600 

-.5025 
-.5395 

-.5721 

-.6068 
-.6270 

-.5710 

-.6340 
-.6353 

-.6093 

-.6687 
-.5743 

-.6413 

-.6012 
-.6276 

-.6322 

-.6533 
-.5949 

-.6473 
-.5956 

.90 

.0823 

.2062 

.1812 

.2929 

.2367 

.2271 

.2331 

.2002 

.1877 

.1592 

.1507 

.1275 

.1215 

.0982 

.0900 

.0752 

.0598 

.0606 

.0491 

.0421 

.0422 

.0349 

.0348 

.0226 

.0191 

.0127 

.0072 

.0064 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

-.0002 

.0000 
.0000 

-.0121 

-.0107 
-.0120 

.0000 

-.0177 
-.0056 

-.0204 
-.0181 

.95 

.1550 
.2863 

.2353 

.3572 

.3000 

.3003 

.2838 

.2487 

.2366 

.2116 

.2055 

.1659 

.1584 

.1385 

.1416 

.1075 

.1050 

.0974 

.0889 

.0838 

.0717 

.0636 

.0704 

.0578 

.0446 

.0393 

.0347 

.0294 

.0225 

.0205 

.0219 

.0195 

.0109 

.0121 

.0025 

.0000 

.0032 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.98 

.2247 
.3709 

.3252 

.4320 

.3726 

.3740 

.3591 

.3259 

.3019 

.2691 

.2633 

.2151 

.2153 

.1906 

.1892 

.1447 

.1502 

.1435 

.1301 

.1167 

.1156 

.1007 

.0973 

.0934 

.0867 

.0733 

.0732 

.0458 

.0600 

.0401 

.0473 

.0430 

.0465 

.0408 

.0268 

.0288 

.0246 
.0299 

.0241 

.0125 

.0184 

.0212 

.0046 

.0067 

.0062 
0061 

.99 

.3382 

.4182 

.3939 

.5158 

.4029 

.4152 

.4032 

.3583 

.3431 

.2980 

.3076 

.2483 

.2452 

.2329 

.2233 

.1715 

.1821 

.1723 

.1671 

.1482 

.1377 

.1260 

.1153 

.1109 

.1117 

.0952 

.0996 

.0693 

.0815 

.0593 

.0668 

.0672 

.0666 

.0494 

.0390 

.0400 

.0404 

.0516 

.0399 

.0235 

.0372 

.0342 

.0177 

.0184 

.0244 

.0222 
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Table A.3. Critical values of statistic (4) 

 
 
n 

 5 

 6 
 7 

 8 

 9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

20 

21 
22 

23 

24 
25 

26 

27 
28 

29 

30 
31 

32 

33 
34 

35 

36 
37 

38 
39 

40 

41 
42 

43 

44 
45 

46 

47 
48 

49 

50 
 

 
.01 

.0151 

.0322 

.0426 

.0559 

.0567 

.0656 

.0771 

.0826 

.0883 

.0899 

.0952 

.1003 

.1059 

.1000 

.1088 

.1131 

.1166 

.1146 

.1170 

.1225 

.1247 

.1245 

.1295 

.1316 

.1284 

.1315 

.1353 

.1361 

.1368 

.1397 

.1384 

.1407 

.1365 

.1441 

.1409 

.1423 

.1420 

.1421 

.1473 

.1471 

.1434 

.1456 

.1496 

.1480 

.1521 

.1508 
 

 
.05 

.0864 

.0946 

.1006 

.1112 

.1170 

.1212 

.1256 

.1314 

.1323 

.1367 

.1411 

.1423 

.1444 

.1433 

.1518 

.1547 

.1537 

.1529 

.1556 

.1574 

.1597 

.1600 

.1604 

.1636 

.1603 

.1618 

.1669 

.1655 

.1649 

.1679 

.1683 

.1691 

.1674 

.1701 

.1695 

.1710 

.1716 

.1721 

.1751 

.1735 

.1720 

.1755 

.1747 

.1751 

.1774 

.1754 
 

 
.10 

.1279 

.1315 

.1363 

.1429 

.1482 

.1512 

.1564 

.1601 

.1596 

.1621 

.1660 

.1685 

.1679 

.1696 

.1753 

.1733 

.1753 

.1739 

.1742 

.1780 

.1783 

.1796 

.1805 

.1800 

.1778 

.1805 

.1845 

.1822 

.1820 

.1847 

.1858 

.1838 

.1831 

.1869 

.1860 

.1855 

.1879 

.1874 

.1882 

.1886 

.1876 

.1886 

.1891 

.1886 

.1898 

.1897 
 

 
.90 

.4660 

.4433 

.4229 

.4101 

.3991 

.3946 

.3824 

.3761 

.3670 

.3634 

.3591 

.3553 

.3488 

.3489 

.3417 

.3392 

.3403 

.3354 

.3335 

.3276 

.3288 

.3258 

.3219 

.3218 

.3185 

.3166 

.3164 

.3137 

.3107 

.3099 

.3090 

.3106 

.3067 

.3069 

.3037 

.3005 

.3017 

.3002 

.3002 

.2998 

.2979 

.2954 

.2961 

.2950 

.2959 

.2931 
 

 
.95 

.5129 

.4882 

.4663 

.4543 

.4360 

.4309 

.4138 

.4094 

.3995 

.3971 

.3877 

.3843 

.3767 

.3732 

.3663 

.3648 

.3661 

.3628 

.3566 

.3495 

.3513 

.3483 

.3444 

.3419 

.3386 

.3377 

.3359 

.3309 

.3304 

.3320 

.3275 

.3283 

.3271 

.3255 

.3212 

.3174 

.3190 

.3193 

.3180 

.3164 

.3136 

.3123 

.3137 

.3109 

.3116 

.3074 
 

 
.98 

.5566 

.5362 

.5135 

.4946 

.4778 

.4706 

.4541 

.4414 

.4352 

.4299 

.4148 

.4163 

.4075 

.3973 

.3961 

.3954 

.3961 

.3886 

.3814 

.3758 

.3798 

.3730 

.3676 

.3673 

.3611 

.3606 

.3572 

.3566 

.3519 

.3520 

.3488 

.3487 

.3461 

.3466 

.3399 

.3418 

.3367 

.3380 

.3352 

.3356 

.3334 

.3302 

.3322 

.3292 

.3275 

.3281 
 

 
.99 

.5903 

.5658 

.5432 

.5182 

.5070 

.4979 

.4816 

.4665 

.4595 

.4472 

.4303 

.4394 

.4282 

.4205 

.4171 

.4144 

.4080 

.4083 

.3994 

.3981 

.4034 

.3889 

.3876 

.3823 

.3789 

.3753 

.3734 

.3745 

.3714 

.3641 

.3641 

.3659 

.3597 

.3620 

.3547 

.3549 

.3491 

.3493 

.3491 

.3474 

.3456 

.3447 

.3452 

.3419 

.3379 

.3422 
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Table A.4. Critical values of statistic (6) 
 
 

  n 
5 

 6 

 7 
 8 

 9 

10 
11 

12 

13 
14 

15 

16 
17 

18 

19 
20 

21 

22 
23 

24 

25 
26 

27 

28 
29 

30 

31 
32 

33 

34 
35 

36 

37 
38 

39 

40 
41 

42 

43 
44 

45 

46 
47 

48 

49 
50 

80 
81 

86     

.01 
.0000 

.0000 

.0000 

.0126 

.0401 

.0584 

.0568 

.0579 

.0759 

.0833 

.0904 

.1067 

.1181 

.1157 

.1239 

.1306 

.1389 

.1478 

.1487 

.1353 

.1517 

.1571 

.1618 

.1646 

.1721 

.1852 

.1637 

.1766 

.1878 

.1837 

.1935 

.1997 

.1820 

.1943 

.2133 

.1989 

.2102 

.2067 

.2145 

.2108 

.2232 

.2215 

.2250 

.2210 

.2282 

.2360 

.2756 

.2767 

.2920 

.05 
.0000 

.0310 

.0631 

.0686 

.0724 

.0929 

.1088 

.1087 

.1200 

.1249 

.1330 

.1367 

.1488 

.1562 

.1633 

.1710 

.1746 

.1813 

.1866 

.1827 

.1957 

.1956 

.2009 

.2060 

.2089 

.2120 

.2112 

.2208 

.2215 

.2232 

.2281 

.2290 

.2271 

.2381 

.2455 

.2413 

.2397 

.2493 

.2470 

.2490 

.2530 

.2530 

.2593 

.2603 

.2596 

.2672 

.3061 

.3056 

.3139 

.10 
.0353 

.0599 

.0749 

.0863 

.0972 

.1186 

.1278 

.1337 

.1443 

.1483 

.1602 

.1585 

.1743 

.1836 

.1829 

.1926 

.1951 

.2019 

.2041 

.2075 

.2157 

.2163 

.2193 

.2219 

.2247 

.2341 

.2344 

.2404 

.2406 

.2451 

.2450 

.2512 

.2484 

.2575 

.2587 

.2609 

.2578 

.2658 

.2655 

.2711 

.2706 

.2755 

.2755 

.2776 

.2775 

.2812 

.3187 

.3240 

.3266 

.90 
.2231 

.2483 

.2584 

.2707 

.2831 

.2865 

.3031 

.2995 

.3124 

.3176 

.3257 

.3304 

.3353 

.3362 

.3399 

.3462 

.3478 

.3487 

.3475 

.3549 

.3543 

.3534 

.3592 

.3674 

.3650 

.3676 

.3694 

.3693 

.3713 

.3762 

.3727 

.3819 

.3770 

.3841 

.3843 

.3828 

.3849 

.3889 

.3874 

.3896 

.3889 

.3902 

.3912 

.3884 

.3976 

.3956 

.4154 

.4178 

.4182 

.95 
.2517 

.2719 

.2879 

.2957 

.3048 

.3101 

.3237 

.3239 

.3372 

.3400 

.3444 

.3505 

.3529 

.3527 

.3601 

.3656 

.3634 

.3645 

.3697 

.3734 

.3695 

.3718 

.3780 

.3849 

.3822 

.3846 

.3869 

.3871 

.3918 

.3903 

.3888 

.4026 

.3893 

.3947 

.4023 

.4009 

.4001 

.4032 

.4021 

.4041 

.4032 

.4041 

.4064 

.4042 

.4130 

.4081 

.4272 

.4270 

.4294 

.98 
.2789 

.3023 

.3179 

.3239 

.3359 

.3349 

.3459 

.3481 

.3593 

.3688 

.3635 

.3749 

.3706 

.3738 

.3830 

.3887 

.3878 

.3788 

.3967 

.3893 

.3870 

.3887 

.3989 

.4014 

.3957 

.4052 

.4068 

.4070 

.4050 

.4074 

.4171 

.4121 

.4125 

.4108 

.4169 

.4174 

.4123 

.4194 

.4174 

.4201 

.4188 

.4169 

.4217 

.4244 

.4290 

.4244 

.4392 

.4420 

.4402 

.99 
.2902 

.3166 

.3318 

.3318 

.3496 

.3508 

.3625 

.3652 

.3711 

.3864 

.3757 

.3882 

.3843 

.3862 

.3953 

.4083 

.3967 

.4006 

.4174 

.4063 

.3992 

.4013 

.4122 

.4249 

.4096 

.4133 

.4184 

.4205 

.4184 

.4172 

.4279 

.4217 

.4256 

.4193 

.4335 

.4287 

.4251 

.4308 

.4244 

.4258 

.4287 

.4296 

.4363 

.4300 

.4424 

.4393 

.4454 

.4500 

.4468 

 

 

 

 


