Bioactivity Guided Phytochemical Study of Clematis hirsuta Growing in Saudi Arabia

  • Published : 2008.03.31

Abstract

Bioactivity guided phytochemical study of the petroleum ether and butanol extracts of Clematis hirsuta resulted in the isolation of 12 compounds. Rat paw edema as a model of acute inflammation was used to evaluate the anti-inflammatory activity of the extracts and the chromatographic fractions. Five known sterols and triterpenes namely: ${\beta}-amyrin$ (1), lupeol (2), ${\beta}-sitosterol$ (3), oleanolic acid (4) and stigmasterol glycoside (5) were isolated from the petroleum ether extract. The n-butanol extract afforded two compounds reported for the first time from natural source: (S)-(+)-dihydro-5-(hydroxymethyl)-2(3H)-furanone (7) and (s)-(-)-5-hydroxymethyl-2(5H)-furanone (8). In addition, anemonin (6), dihydro-4-hydroxy-5-(hydroxymethyl)-2(3H)-furanone (2-deoxy-D-ribono-1,4-lactone) (9), biophenol (cimidahurin) (10), glucose (11) and sucrose (12) were also identified. The structures were determined from spectroscopic data including 1D- and 2D-NMR experiments.

Keywords

References

  1. Agrawal, P.K., Carbon-13 NMR of Flavonoids. Elsevier, Amesterdam, Oxford, New York, Tokyo, 1989
  2. Ahmed, V.U. and Rahman, A.U., Handbook of Natural Products Data. Elsevier, Amsterdam, Vol. 2, pp. 21, 111, 1038, 1994
  3. Bianco, A., Mazzei, R.A., Melchioni, C., Romeo, G., Scarpati, M.L., Soriero, A., and Uccella, N., Microcomponents of olive oil-III. Glucosides of 2(3,4-dihydroxy-phenyl) ethanol. Food Chem. 63, 461- 464 (1998) https://doi.org/10.1016/S0308-8146(98)00064-8
  4. Buzzini, P., and Pieroni, A., Antimicrobial activity of extracts of Clematis vitalba toward pathogenic yeast and yeast-like microorganisms. Fitoterapia 74, 397-400 (2003) https://doi.org/10.1016/S0367-326X(03)00047-9
  5. Caceres, A., Menendez, H., Mendez, E., Cohobon, E., Samayoa, B.E., Jauregui, E., Peralta, E., and Carrillo, G., Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases. J. Ethnopharmacol. 48, 85-88 (1995) https://doi.org/10.1016/0378-8741(95)01288-O
  6. Chen, Y., Liu, J., Davidson, R. S. and Howarth, O. W., Isolation and structure of clematine. A new flavanone glycoside from Clematis armandii Franch. Tetrahedron 49, 5169-5176 (1993) https://doi.org/10.1016/S0040-4020(01)81881-0
  7. Cos, P., Hermans, N., De Bruyne, T., Apers, S., Sindambiwe, J.B., Berghe, D.V., Pieters, L., and Vlietinck, A.J., Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities. J. Ethanopharmacol. 79, 155-163 (2002) https://doi.org/10.1016/S0378-8741(01)00362-2
  8. Dennis, W.M. and Bierner, M.W., Distribution of flavonoids and their systemic significance in Clematis subsection viornae. Biochem. Syst. Ecol. 8, 65- 67 (1980) https://doi.org/10.1016/0305-1978(80)90027-7
  9. Duan, H., Zhang, Y., Xu, J., Qiao, J., Suo, Z., Hu, G., and Mu, X., Effect of anemonin on NO, Et-1 and ICAM-1 production in rat intestinal microvascular endothelial cells. J. Ethanopharmacol. 104, 362-366 (2006) https://doi.org/10.1016/j.jep.2005.09.034
  10. Evans, W.C., Trease and Evans' Pharmacognosy. 15th ed. W. B. Saunders Company Ltd. Edinburgh, London, New York, Philadelphia, St Louis, Sydney, Toronto, 2002
  11. Francisco, C.M., Nasser, A.L.M., and Lopes, L.M.X., Tetrahydroisoquinoline alkaloids and 2-deoxyribonolactones from Aristolochia arcuata. Phytochemistry 62,1265-1270 (2003) https://doi.org/10.1016/S0031-9422(02)00655-6
  12. Good, L.J. and Akihisa, T., Analysis of Sterols. Chapman and Hall, London, pp. 379, 413, 1997
  13. Gruenwald, J., Brendler, T., and Jaenicke, C., PDR for Herbal Medicine. 2nd ed., Medical Economics Company, Montvale, N. J., USA, pp. 128, 194-95, 2000
  14. Kawata, Y., Kizu, H., Miyaichi Y. and Tomimori, T., Studies on the constituents of Clematis species VIII. Triterpenoid saponins from the aerial part of Clematis tibetana Kuntz. Chem. Pharm. Bull. 49, 635- 638 (2001) https://doi.org/10.1248/cpb.49.635
  15. Kawata, Y., Kizu H., and Tomimori, T., Studies on the constituents of Clematis species. VII. Triterpenoid saponins from the roots of Clematis terniflora DC. var. robusta Tamura. Chem. Pharm. Bull. 46, 1891-1900 (1998) https://doi.org/10.1248/cpb.46.1891
  16. Kern, J.R. and Cardellina II, J.H., Native American medicinal plants. Anemonin from the horse stimulant Clematis hirsutissima. J. Ethnopharmacol. 8, 121-123 (1983) https://doi.org/10.1016/0378-8741(83)90093-4
  17. Khan, M.R., Kihara, M., and Omoloso, A.D., Antimicrobial activity of Clematis papuasica and Nauclea obversifolia. Fitoterapia 72, 575-578 (2001) https://doi.org/10.1016/S0367-326X(01)00258-1
  18. Kizu, H., Shimana, H., and Tomimori, T., Studies on the constituents of Clematis species VI. The constituents of Clematis stans Sieb. et Zucc. Chem. Pharm. Bull. 43, 2187-2194 (1995) https://doi.org/10.1248/cpb.43.2187
  19. Kolak, U., Topcu, G., Bïrteksoz, S., Otuk, G., and Ulubelen, A., Terpenoids and sterols from the roots of Salvia belpharochlaena. Turk. J. Chem. 29, 177-186 (2005)
  20. Lassak, E.V. and McCarthy, T., Australian Medicinal Plants. Methuen Australia, North Ryde, pp. 55, 1983
  21. Martin, M.L., De Urbina, A.V.O., Montero, M.J., Carron, R., and Roman, L.S., Pharmacological effects of lactones isolated from Pulsatilla alpine subsp. apiifolia. J. Ethanopharmacol. 24, 185-191 (1988) https://doi.org/10.1016/0378-8741(88)90150-X
  22. Min, B.S., Kim, Y.H., Tomiyama, M., Nakamura, N., Miyashiro, H., Otake, T., and Hattori, M., Inhibitory effects of Korean plants on HIV- 1 activities. Phytother. Res. 15, 481-486 (2001) https://doi.org/10.1002/ptr.751
  23. Morgan, G.R., Sugar Bowls (Clematis hirsutissima): a horse restorative of the Nez Perces. J. Ethnopharmacol. 4, 117-120 (1981) https://doi.org/10.1016/0378-8741(81)90025-8
  24. Popov, K.I., Sultanova, N., Rönkkömäki, H., Hannu-Kuure, M., Jalonen, J., Lajunen, L.H.J., Bugaenko, I.F., and Tuzhilkin, V.I., $^{13}C$ NMR and electroscopy ionization mass spectrometric study of sucrose aqueous solutions at high pH: NMR measuremrnt of sucrose dissociation constant. Food Chem. 96, 248-253 (2006) https://doi.org/10.1016/j.foodchem.2005.02.025
  25. Pouchert, C.J. and Behnke, J., The Aldrich Library of $^{13}C$ and $^{1}H$ FTNMR Spectra, Aldrich Chemical Co., 1992
  26. Slavik, J. and Slavikova, L., Quaternary isoquinoline alkaloids and some diterpenoid alkaloids in plants of the Czech republic. Collect. Czech. Chem. Comm. 60, 1034-1041 (1995) https://doi.org/10.1135/cccc19951034
  27. Southwell, I.A. and Tucker, D.J., Protoanemonin in Australian Clematis. Phytochemistry 33, 1099-1102 (1993) https://doi.org/10.1016/0031-9422(93)85030-U
  28. Winter, C.A., Risley, E.A., and Nuss, G.W., Carragenan-induced edema in hind paws of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Expt. Biol. Med. 111, 544-47 (1962)
  29. Xu, G.J., He, H.X., Xu, L.S., and Jin, R.L., The Chinese Materia Medica, Vol. 1, Chinese Medicine and Technology Press, Beijing, China, 1996
  30. Xu, R., Zhao, W., Xu, J., Shao, B., and Qin, G., Studies on bioactive saponins from Chinese medicinal plants. Adv. Exp. Med. Biol. 404, 371-382 (1996)
  31. Yesilada, E. and Küpeli, E., Clematis vitalba L. aerial part exhibits potent antiinflammatory, antinociceptive and antipyretic effects. J. Ethnopharmacol. 110, 504-515 (2007) https://doi.org/10.1016/j.jep.2006.10.016