DOI QR코드

DOI QR Code

Identification of a Transferrin Receptor-binding Peptide from a Phage-displayed Peptide Library

파지-펩타이드 문고로부터 트랜스페린 수용체에 결합하는 펩타이드 탐색

  • Kim, Sung-Il (Department of Chemistry, Kangnung National University) ;
  • Choi, Suk-Jung (Department of Chemistry, Kangnung National University)
  • Published : 2008.03.31

Abstract

Using a phage peptide library approach, we have isolated a peptide ligand that binds to transferrin receptor on the surface of human melanoma cell, B16F10. The library was first screened twice by recovering internalized phages and was further screened three times by competitively eluting transferrin receptor-specific phages with human transferrin among the phages bound to the cell surface. The peptides displayed by the selected phages were fused to translocation and catalytic domain of Pseudomonas exotoxin to prepare recombinant toxins. After estimating cytotoxicity of each recombinant toxin toward B16F10 cell, seven clones were selected. Sequence analysis revealed that one of the clones displayed a peptide which had a significant sequence homology with human transferrin. The peptide was chemically synthesized and was shown to be functional in delivering cytotoxic agents into B16F10 cell via interaction with transferrin receptor.

펩타이드 문고 기술을 이용하여 흑색종 세포주인 B16FI0에 결합하는 펩타이드 리간드를 검색하였다. 먼저 세포 내부로 들어간 파지들을 선택하는 방법으로 두 번 검색한 후 표면에 결합한 파지들 가운데 트랜스페린 단백질을 이용하여 트랜스페린 수용체에 결합한 파지들만을 선별적으로 용출시키는 방법으로 세 번 검색하였다. 다음으로 이 두 가지 방법을 통해 선별된 파지들에 표현된 펩타이드들을 Pseudomonas exotoxin의 전이 영역과 촉매 영역에 융합시킨 재조합 독소들을 만들었다. B16FI0 세포에 대한 각 재조합 독소의 활성을 측정하여 일곱 개의 클론을 선택한 후 염기서열을 분석하였다. 그 결과 그 가운데 한 클론에서 표현하는 펩타이드의 아미노산 서열이 사람의 트랜스페린과 유사한 서열을 갖는 것으로 확인되었다. 그 펩타이드를 화학적으로 합성한 후 항암제를 포함하는 리포솜에 붙여 실험한 결과 트랜스페린 수용체를 통해 치료물질을 전달할 수 있는 가능성을 지닌 것으로 평가되었다.

Keywords

References

  1. Aina, O. H., T. C. Sroka, M. L. Chen and K. S. Lam. 2002. Therapeutic cancer targeting peptides. Biopolymers 66, 184-199. https://doi.org/10.1002/bip.10257
  2. Atkins, J. F., R. B. Weiss, S. Thompson and R. F. Gesteland. 1991. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 25, 201-228. https://doi.org/10.1146/annurev.ge.25.120191.001221
  3. Carcamo, J., M. W. Ravera, R. Brissette, O. Dedova, J. R. Beasley, A. Alam-Moghe, C. Wan, A. Blume and W. Mandecki. 1998. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library. Proc. Natl. Acad. Sci. USA. 95, 11146-11151. https://doi.org/10.1073/pnas.95.19.11146
  4. Chiu, S. J., S. Liu, D. Perrotti, G. Marcucci and R. J. Lee. 2006. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J. Control. Release 112, 199-207. https://doi.org/10.1016/j.jconrel.2006.02.011
  5. Choi, S. J., M. Ahn, J. S. Lee and W. J. Jung. 1997. Selection of a high affinity angiogenin-binding peptide from a peptide library displayed on phage coat protein. Mol. Cells 7, 575-581.
  6. Daniels, T. R., T. Delgado, J. A. Rodriguez, G. Helguera and M. L. Penichet. 2006. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121, 144-158. https://doi.org/10.1016/j.clim.2006.06.010
  7. Daniels, T. R., T. Delgado, G. Helguera and M. L. Penichet. 2006. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121, 159-176. https://doi.org/10.1016/j.clim.2006.06.006
  8. Gomme, P. T. and K. B. McCann. 2005. Transferrin: structure, function and potential therapeutic actions, Drug Discov. Today 10, 267-273. https://doi.org/10.1016/S1359-6446(04)03333-1
  9. Laske, D. W., R. J. Youle and E. H. Oldfield. 1997. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors, Nat. Med. 3, 1362-1368. https://doi.org/10.1038/nm1297-1362
  10. Liao, W. P., J. DeHaven, J. Shao, J. X. Chen, Y. Rojanasakul, D. L. Lamm and J. K. H. Ma. 1998. Liposomal delivery of alpha-interferon to murine bladder tumor cells via transferrin receptor-mediated endocytosis. Drug Deliv. 5, 111-118. https://doi.org/10.3109/10717549809031386
  11. Parker, J. 1989. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53, 273-298.
  12. Romanov, V. I. 2003. Phage display selection and evaluation of cancer drug targets. Curr. Cancer Drug Targets 3, 119-129. https://doi.org/10.2174/1568009033482010
  13. Shadidi, M. and M. Sioud. 2003. Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat. 6, 363-371. https://doi.org/10.1016/j.drup.2003.11.002
  14. Xu, Z., W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan and Y. Li. 2005. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm. 288, 361-368. https://doi.org/10.1016/j.ijpharm.2004.10.009

Cited by

  1. Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells pp.1618-2650, 2017, https://doi.org/10.1007/s00216-017-0664-4