DOI QR코드

DOI QR Code

The Development of 4M Learning Cycle Teaching Model Based on the Integrated Mental Model Theory: Focusing on the Theoretical Basis & Development Procedure

통합적 정신모형 이론에 기반한 4M 순환학습 수업모형 개발: 이론적 배경과 개발과정을 중심으로

  • Park, Ji-Yeon (Seoul National University, Department of Physics Education) ;
  • Lee, Gyoung-Ho (Seoul National University, Department of Physics Education)
  • 박지연 (서울대학교 물리교육과) ;
  • 이경호 (서울대학교 물리교육과)
  • Published : 2008.08.30

Abstract

Many researches have reported that it is difficult to solve students' difficulties in learning science with teaching models focused on certain aspects because of various reasons. Recently, in science education research, the integrated perceptive has been to put emphasis on understanding complex situations of real teaching and learning. In this research context, the integrated mental model theory that were considered as a whole factor related to learning has been studied by integrating previous studies that related to students' conceptions and learning in various fields. Thus, it is needed that the teaching model be based on the integrated mental model theory to help students to solve their difficulties. The purpose of this research was to develop a new teaching model based on the integrated mental model theory to address this issue. We reviewed current studies on student difficulties and teaching models. After this, we developed 4M learning cycle teaching model. In this paper, we described the process of developing a new teaching model and discussed how to apply this teaching model to the practices. We also discussed the effects of 4M learning cycle teaching model based on the integrated mental model theory in learning science with its implications.

최근 과학교육 분야의 연구들에 의하면 학생들은 과학수업 시 다양한 어려움을 지각하며 수업 후에도 이러한 어려움이 잘 해소되지 않는다는 연구 결과가 보고되고 있다. 그러나 학생들이 느끼는 과학학습의 어려움과 그 원인을 조사하여 이를 해소시키기 위한 연구는 아직 부족한 실정이다. 따라서 학생들의 과학학습 어려움에 대한 체계적인 분석과 더불어 어려움을 해소하고 학습효과를 향상시킬 수 있는 새로운 수업모형 개발이 필요하다. 본 연구에서는 최근의 과학학습 과정에서 학생의 겪는 어려움과 기존 과학수업 모형에 관한 선행연구들을 조사하여, 이 결과를 통합적 정신모형이론 관점에서 분석하였다. 이러한 과정을 거쳐 과학학습 어려움 해소를 도울 수 있는 통합적 정신모형 이론에 기반한 4M 순환학습 수업모형을 개발하였다.

Keywords

References

  1. 강홍준 (2007). 고1 최상위권 과학성적 세계 2위$\rightarrow$ 17위 추락, 새 대통령 '교육결단' 필요. 중앙일보 12월 5 일자 신문
  2. 권재술 (1989). 과학개념의 한 인지적 모형. 물리교육, 7, 1-9
  3. 기현희 (2008). 전력 학습에 관한 중학생의 어려움 이해. 서울대학교 석사학위논문
  4. 김영민, 권성기 (1992). 전류 개념 변화를 위한 순 환학습의 효과. 한국과학교육학회지, 12(3), 21-35
  5. 김익균, 이홍준 (2006). 대학생들의 상대운동 개념 의 상황의존성. 한국과학교육학회지, 26(3), 462-473
  6. 남정희, 최준환, 고문숙, 김재홍, 강순민, 임재항, 공 영태 (2005). 형성평가를 이용한 교수-학습 전략이 중학 교 학생들의 과학개념 이해, 학습동기, 메타인지 능력에 미치는 영향. 대한화학회지, 49(3), 311-320 https://doi.org/10.5012/jkcs.2005.49.3.311
  7. 송진웅(1997). 과학교육에서의 상황 관련 연구에 대 한 개관과 분석. 한국과학교육학회지, 17(3), 273-288
  8. 양명원 (1988). 순환학습 모형을 이용한 일반화학실 험이 학생들의 화학수업에 대한 태도와 탐구능력 신장 에 미치는 영향. 한국교원대학교 대학원 석사학위 논문
  9. 이경호, 신종호, 송상호, 김연수, 박지연, & Bao, L. (2005). 과학수업전략과 교수자료 개발을 위한 중등학생 의 정신모형(Mental Model) 탐색 연구: 이론의 현장적용 방안을 중심으로. 한국학술진흥재단 연구보고서(2003-042- B00165)
  10. 이경호 (2007). 왜 학생들은 물리학을 어려워하는가?: 지식 신념틀을 이용한 물리학습의 어려움에 대한 구조 적 분석을 향하여. 새물리(Sae Mulli), 54(4), 284-295
  11. 이승희 (2006). 대학 전공 역학 학습에서 '학생의 어려움'과 그 해소방안: 'Lagrange's Equation' 학습을 중 심으로. 서울대학교 석사학위논문
  12. 최병순 (1990). Learning Cycle Model을 이용한 화학 실험이 학생들의 탐구능력 신장에 미치는 영향. 화학교육, 17(1), 6-11
  13. 한국교육과정평가원 (2007). 대한민국, OECD PISA 에서 높은 교육 성취수준 달성: OECD 학업 성취도 국 제 비교 연구(PISA 2006) 주요 결과 발표
  14. 한종하 (1987). 과학적 사고력 신장을 위한 수업전 략. 서울: 한국교육 개발원
  15. 홍순경, 최병순 (1991). 밀도의 개념 변화에 미치는 순환 학습의 효과, 한국과학교육학회지, 11(1), 15-24
  16. Barman, C. (1997). The learning cycle revisited: A modification of an effective teaching model. Monograph 6. Washington, DC: Council for Elementary Science International
  17. Blank, L. M. (2000). A metacognitive learning cycle: A better warranty for student understanding?. Science Education, 84(4), 486-506 https://doi.org/10.1002/1098-237X(200007)84:4<486::AID-SCE4>3.0.CO;2-U
  18. Bodzin, A., Cates, W., Price, B., & Pratt K. (2003). Implementing a web-integrated high scghool biology program. Web poster session presented at the 2003 National Educational Computing Conference(NECC) in Seattle, WA
  19. Boulter, C. J., Buckley, B., & Walkington, H. (2001). Model-based teaching and learning during ecological inquiry. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, WA. (ERIC Document Reproduction Service No. ED454048)
  20. BSCS (2006). The Cornerstone-to-Capstone Approach: Creating Coherence in High School Science. Colorado Springs, Co: Author
  21. Carnine, D. W., Kameenui, E. J., & Coyne, M. D. (Eds). (2002). Effective teaching strategies that accomodate diverse learners(2nd ed.). 이대식, 이창남(역) (2005). 모 든 수준의 학생들을 위한 수업설계 및 교재개발의 원리: 각 교과별 적용 예. 서울: (주)시그마프레스
  22. Chi, M. T. H., Slotta, J. D., & de Leeuw. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43 https://doi.org/10.1016/0959-4752(94)90017-5
  23. Clement, J. (1989). Learning via model construction and criticism. In G. Glover, R. Ronning & C. Reynolds (Eds.), Handbook of Creativity: Assessment, Theory and Research. New York, NY: Plenum
  24. Duit, R. (2002). Conceptual change-still a powerful frame for improving science teaching and learning?. Paper presented at the third European Symposium on Conceptual Change, Finland: Turku
  25. Eisenkraft, A. (2003). Expanding the 5E model: A proposed 7E model emphasizes 'transfer of learning' and the importance of eliciting prior understanding. The Science Teacher, 70(6), 56-59
  26. Fensham, P. (2001). Science content as problematic- Issues for research. In H. Behrendt, H. Dahncke, R. Duit, W.Graber, M. Komorek, A. Koss & P. Reiska (Eds.), Research in Science Education-Past, Present, and Future (pp. 27-41). Dordrecht, The Netherland: Kluwer Academic Publishers
  27. Glasson, G. E., & Lalik, R. V. (1993). Reinterpreting the learning cycle from a social constructivist perspective: A qualitative survey of teachers' beliefs and practices. Journal of Research in Science teaching, 30(2), 187-207 https://doi.org/10.1002/tea.3660300206
  28. Glynn, S. M. (1997). Learning from science text: Role of an elaborate analogy. Colledge Park, MD: National Reading Research Center
  29. Gobert, J. D. (2005). The effect of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455 https://doi.org/10.5408/1089-9995-53.4.444
  30. Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894 https://doi.org/10.1080/095006900416839
  31. Halloun, I. (2004). Modeling theory in science education. The Netherlands: Kluwer Academic Publishers
  32. Hamaker, C. (1986). The effects of adjunct questions on prose learning. Review of Educational research, 56(2), 212-242 https://doi.org/10.3102/00346543056002212
  33. Hennessey, M. (1993). Students' ideas about their conceptualization: Their elicitation through instruction. Paper presented at the annual meeting of the national Association for Research in Science Teaching, Atlanta, GA
  34. Hiebert, J., Wearne, D., & Taber, S. (1991). Fourth graders' gradual construction of decimal fractions during instruction using different physical representations. Elementary School Journal, 91(4), 321-341 https://doi.org/10.1086/461658
  35. Karplus, R. (1977). Science teaching and the development interactions. Journal of Research in Science Teaching, 26( 3), 237-250 https://doi.org/10.1002/tea.3660260305
  36. Klob. D. A. (1984). Experiential learning: experience as the source of learning and development, NJ: Prentice Hall
  37. Lawson, A., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. NARST Monograph No. 1
  38. Lavoie, D. (1999). Effects of emphasizing hypotheticopredictive reasoning within the science learning cycle on high school student's process skills and conceptual understandings in biology. Journal of Research in Science Teaching, 36(10), 1127-1147 https://doi.org/10.1002/(SICI)1098-2736(199912)36:10<1127::AID-TEA5>3.0.CO;2-4
  39. Lee, G., Shin, J., Park J., Song, S., Kim, Y., & Bao, L. (2005). An integrated theoretical structure of mental model: Toward understanding how students form their ideas about science. Journal of the Korean Association for Research in Science Education, 25(6), 698-707
  40. Marzano, R. J., Pickering, D. J., & Pollock, J. E. (2001). Classroom instruction that works: Research based strategies for increasing student achievement. Alexandria, VA: Association for Supervision and Curriculum Development( ASCD)
  41. Mayer, R., & Gallini, J. (1990). When is an illustration worth a thousand words? Journal of Educational Psychology, 82, 715-726 https://doi.org/10.1037/0022-0663.82.4.715
  42. Osman, M., & Hannafin, M. J. (1994). Effects of advance organzing questioning and prior knowledge on science learning. Journal of Educational Research, 88(1), 5-13 https://doi.org/10.1080/00220671.1994.9944829
  43. Pintrich, P. R., Mark, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-199 https://doi.org/10.3102/00346543063002167
  44. Pressley, M., Wood, E., Woloshyn, V., Martin, V., King, A., & Menke, D. (1992). Encouraging mindful use of prior knowledge: Attempting to construct explanatory answers facilitates learning. Educational Psychologist, 27(1), 91-109 https://doi.org/10.1207/s15326985ep2701_7
  45. Reeve J. (2000). Understanding motivational and emotion(3rd ed.). 정봉교, 현성용, 윤병수(역) (2003). 동 기와 정서의 이해(3판). 서울: 박학사
  46. Sinatra, G. M. (2002). Motivational, social, and contextual aspects of conceptual change: A commentary. In M. Lim n & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp.187-197). Dordrecht, The Netherlands: Kluwer
  47. Venville, G. (2004). Young children learning about living things: A case study of conceptual change from ontological and social perspectives. Journal of Research in Science Teaching, 41(5), 449-480 https://doi.org/10.1002/tea.20011
  48. Warjovaara, R. (2007, December 5). '학력 1위' 핀 란드, 비결은 '수준별 수업'. 조선일보 https://doi.org/10.1002/tea.20011
  49. Wells, M., Hestenes, D., & Swackhanmer, G. (1995). A modelling method for high schoolphysics instruction. American Journal of Physics, 64(7), 606-619
  50. White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100 https://doi.org/10.1207/s1532690xci1001_1
  51. Wittmann, M., & Scherr, R. (2002). Epistemology mediating conceptual knowledge: Constraints on data accessible from interviews. Physics Education Research Conference Proceedings
  52. YILMAZ, H., & AVA , P. H. (2006). The effect of the 4-E Learning Cycle method on students' understanding of electricity. Journal of Turkish Science Education, 3(1), 2-18
  53. Zollman, D. (1990). Learning cycles for a largeenrollment class. The Physics Teacher, 28(1), 20-25 https://doi.org/10.1119/1.2342921