DOI QR코드

DOI QR Code

Formation, Breakage and Reformation of Humic Flocs by Inorganic and Organic Coagulants

  • Kam, Sang-Kyu (Division of Civil and Environmental Engineering, Cheju National University) ;
  • Lee, Min-Gyu (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Kang, Kyung-Ho (Division of Civil and Environmental Engineering, Cheju National University) ;
  • Xu, Mei-Lan (Division of Civil and Environmental Engineering, Cheju National University)
  • Published : 2008.03.31

Abstract

The floc formation, breakage and reformation of humic acid by inorganic (alum and PAC) and organic coagulants (cationic polyelectrolytes) at several conditions (pH, ionic strength and floc breakage time) were examined and compared among the coagulants at different conditions using a continuous optical monitoring method, with controlled mixing and stirring conditions. For alum, the shapes of formation, breakage and reformation curves at different pH (5 and 7) were different, but the shapes and the sizes of initial floc and reformed floc were nearly the same in the absence and presence of electrolytes at pH 7. For PAC, similar shapes of the curves were obtained at different pH and ionic strength, but the sizes were different, except for those of reformed flocs at different pH. However, for these coagulants, reformed flocs after floc breakage, occurred irreversibly for all the conditions used in this study. For organic coagulants, the time to attain the initial plateau floc size, the extent of floc strength at high shear rate and reversibility of reformed floes were different, depending floc formation mechanism. Especially, for the cationic polyelectrolyte forming humic flocs by charge neutralization or electrostatic patch effect mechanism, reformed flocs occurred reversibly, regardless of pH and floc breakage time, but occurred irreversibly in the presence of electrolytes.

Keywords

References

  1. Rebhun M., Lurie M., 1993, Control of organic matter by coagulation and floc separation, Water Sci. Technol., 27(11), 1-20 https://doi.org/10.1021/es00038a700
  2. Tipping E., 1993, Modelling ion binding by humic acids, Colloids & Surfaces A, 73, 117-131 https://doi.org/10.1016/0927-7757(93)80011-3
  3. Smeds A., Franzen R., Kronberg L., 1995, Occurrence of some chlorinated enol lactones and cyclopentane-1,3-diones in chlorine-treated waters, Environ. Sci. Technol., 29(7), 1839-1844 https://doi.org/10.1021/es00007a022
  4. Nobukawa T., Sanukida S., 2000, Genotoxicity of halogenated by-products in the disinfected waters, Text of Posters of 1st IWA World Water Congress, Paris, France, Np-049
  5. Matsuo T., Unno H., 1981, Forces acting on floc and strength of floc, J. Enviion. Eng. ASCE, 107, 527-545
  6. Brakalov L. B., 1987, A connection between orthokinetic coagulation capture efficiency of aggregates and their maximum size, Chem. Eng. Sci., 42, 2373-2383 https://doi.org/10.1016/0009-2509(87)80111-2
  7. Muhle K., 1993, Floc stability in laminar and turbulent flow, In Dobias, B. (Ed.), Coagulation and Flocculation. Dekker, New York, pp. 355-390
  8. Gregory J., Rossi L., 2001, Dynamic testing of water treatment coagulants, Water Sci. Technol.: Water Supply, 1(4), 65-72
  9. Serra T., Colomer J., Casamitjana X., 1997, Aggregation and breakup of particles in a shear flow, J. Colloid Interface Sci., 187, 466-473 https://doi.org/10.1006/jcis.1996.4710
  10. Bache D. H., Johnson C., McGilligan J. F., Rasool E., 1997, A conceptual review of floc structure in the sweep floc domain, Water Sci. Technol., 36(4), 49-56
  11. Leentvaar J., Rehbun M., 1983, Strength of ferric hydroxide flocs, Water Res., 17, 895-902 https://doi.org/10.1016/0043-1354(83)90163-X
  12. Duan J., Gregory J., 2003, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100-102, 475-502 https://doi.org/10.1016/S0001-8686(02)00067-2
  13. Francois R. J., 1987, Strength of aluminium hydroxide flocs, Water Res., 21, 1023-1030 https://doi.org/10.1016/0043-1354(87)90023-6
  14. Spicer P. T., Pratsinis S. E., Raper J., Amal R., Bushell G., Meesters G., 1998, Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks, Power Technol., 97, 26-34 https://doi.org/10.1016/S0032-5910(97)03389-5
  15. Clark M. M., Flora J. R., 1991, Floc restructuring in varied turbulent mixing, J. Colloid Interface Sci., 147, 407-421 https://doi.org/10.1016/0021-9797(91)90174-7
  16. Gregory J., Li G., 1991, Effects of dosing and mixing conditions on polymer flocculation of concentrated suspensions, Chem. Eng. Comm., 18, 3-21
  17. Ray D. T., Hogg R., 1987, Aggregate breakage in polymer-flocculated suspensions, J. Colloid Interface Sci., 116(1), 256-268 https://doi.org/10.1016/0021-9797(87)90119-6
  18. Bolto G. A., 1995, Soluble polymers in water purification, Prog. Polym. Sci., 20, 987-1041 https://doi.org/10.1016/0079-6700(95)00010-D
  19. Xu M. L., Lee M. G., Kam S. K., 2005, Comparison of flocculation characteristics of humic acid by inorganic and organic coagulants: effects of pH and ionic strength, J. Environ. Sci., 14(8), 723-737 https://doi.org/10.5322/JES.2005.14.8.723
  20. Lee M. G., Kam S. K., 2005, Charge determination of cationic polyelectrolytes by visual titrimetry and spectrophotometry, J. Environ. Sci., 14(6), 525-532 https://doi.org/10.5322/JES.2005.14.6.525
  21. Griebel T., Kulicke W. M., 1992, Molecular characterization of water-soluble cationic polyelectrolytes, Makromol. Chem., 193, 811-821 https://doi.org/10.1002/macp.1992.021930327
  22. Gregory J., Chung H. J., 1995, Continuous monitoring of floc properties in stirred suspensions, J. Water Supply: Res. Technol., AQUA, 44, 125-131
  23. Kam S. K., Kim D. K., Lee M. G., 2003, Effects of polyelectrolyte dosage, kaoline particles and pH on flocculation of humic acid by cationic polyelectrolytes, J. Environ. Sci., 12(8), 861-870 https://doi.org/10.5322/JES.2003.12.8.861
  24. Gregory J., 1996, Polymer adsorption and flocculation, In Finch, C. A. (ed.), Industrial Water Soluble Polymers, Royal Society of Chemistry, Cambridge, UK, pp. 62-75
  25. Yukselen M. A., Gregory J., 2004, The reversibility of floc breakage, Int. J. Miner. Process, 73, 251-259 https://doi.org/10.1016/S0301-7516(03)00077-2
  26. Gray S. R., Ritchie C. B., 2006, Effect of organic polyelectolyte characteristics on floc strength, Colloids and Surfaces A: Physicochem. Eng. Aspects, 273, 184-188 https://doi.org/10.1016/j.colsurfa.2005.08.020
  27. Durand-Piana G., Lafuma F., Audebert R., 1987, Flocculation and adsorption properties of cationic polyelectrolytes toward Na-montmorillonite dilute suspensions, J. Colloid Interf. Sci., 119, 474-480 https://doi.org/10.1016/0021-9797(87)90293-1
  28. Horn A. F., Merrill E. W., 1984, Midpoint scission of macromolecules in dilute solution in turbulent flow, Nature, 312, 140-141 https://doi.org/10.1038/312140a0
  29. Kretzschmar R., Holthoff H., Sticher H., 1998, Influence of pH and humic acid on coagulation kinetics of kaolinite: a dynamic light scattering study, J. Colloid Interface Sci., 202, 95-103 https://doi.org/10.1006/jcis.1998.5440
  30. Zhou J. L., Rowland S., Mantoura R. F. C., Braven J., 1994, The formation of humic coatings on mineral particles under simulated estuarine conditions- a mechnistic study, Water Res., 28(3), 571-579 https://doi.org/10.1016/0043-1354(94)90008-6
  31. Yukselen M. A., Gregory J., 2002, Breakage and re-formation of alum flocs, Environ. Eng. Sci., 19, 229-236 https://doi.org/10.1089/109287502760271544