References
-
Box, G. E. P. and Hunter, J. S. (1961). The
$2^{k-p}$ fractional factorial designs part I. Technometrics, 3, 311-351 https://doi.org/10.2307/1266725 - Chakravarti, I. M. (1956). Fractional replications in asymmetrical factorial designs and partially balanced arrays. Sankhya, 17, 143-164
- Daniel, C. (1959). Use of half-normal plots in interpreting factorial 2-level experiments. Technometrics, 1, 311-342 https://doi.org/10.2307/1266715
- Fang, K. T. and Hickernell, F. J. (1995). The uniform design and its applications. Bulletin of the International Statistical Institute 50th Session I, 339-349
- Jang, D. H. (2002). Measures for evaluating non-orthogonality of experimental designs. Communications in Statistics Theory and Methods, 31, 249-260 https://doi.org/10.1081/STA-120002649
-
Kim, S. I. (1992). Minimal balanced
$2^t$ fractional factorial designs of resolution-V and Taguchi method. The Korean Journal of Applied Statistics, 5, 19-28 - Ma, C., Fang, K. and Liski, E. (2000). A new approach in constructing orthogonal and nearly orthogonal arrays. Metrika, 50, 255-268 https://doi.org/10.1007/s001840050049
- Raktoe, B. L., Hedayat, A. and Federer, W. T. (1981). Factorial Designs. John Wiley & Sons, New York
- Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. Journal of the Royal Statistical Society, Ser. B, 9, 128-140
-
Srivastava, J. N.(1965). Optimal balanced
$2^m$ fractional factorial designs. S.N. Roy Memorial Volume, University of North Carolina and Indian Statistical Institute -
Srivastava, J. N. and Chopra, D. V.(1971). On the characteristic roots of the information matrix of
$2^m$ balanced factorial designs of resolution-V, with Applications. The Annals of Mathematical Statistics, 42, 722-734 https://doi.org/10.1214/aoms/1177693421 - Taguchi, G. (1986). Introduction to Quality Engineering. Asian Productivity Organization, Tokyo