모바일 환경하에 RFM 기법을 이용한 개인화된 추천 시스템 개발

Implementation of Personalized Recommendation System using RFM method in Mobile Internet Environment

  • 조영성 (동양공업전문대학 전산정보학) ;
  • 허문행 (안양대학교 디지털미디어학과) ;
  • 류근호 (충북대학교 전기전자컴퓨터공학부)
  • 발행 : 2008.03.31

초록

모바일 환경하에의 RFM 기법을 이용한 개인화 된 추천 시스템을 제안한다. 사용자의 평가 자료에 의존하지 않고 사용자에게 번거로운 질의 응답 과정이 없이 묵시적인(Implicity) 방법을 이용하여 고객정보와 구매이력정보를 기반으로 RFM 기법을 이용하여 고객 세분화와 아이템 세분화 통해서 대상 사용자에게 구매 가능성이 높은 아이템을 추천한다. 또한 기존의 추천시스템의 문제점의 해결 방안으로 신규 고객이나 신규 아이템 추천을 고려하여 적용한다. 추천 아이템과 사용자가 구매한 아이템 이력 데이터를 비교하여 추천된 아이템이 중복 추천을 제거하였고 현업에서 사용하는 데이터 셋을 구성하여 실험을 통해서 효용성과 타당성을 입증 및 평가하여 개인화된 일대일 웹 마케팅을 실현하였다.

This paper proposes the recommendation system which is a new method using RFM method in mobile internet environment. Using a implict method which is not used user's profile for rating, is not used complicated query processing of the request and the response for rating, it is necessary for user to keep the RFM score about users and items based on the whole purchased data in order to recommend the items. As there are some problems which didn't exactly recommend the items with high purchasablity for new customer and new item that do not have the purchase history data. in existing recommendation systems, this proposing system is possible to solve existing problems, and also this system can avoid the duplicated recommendation by the cross comparison with the purchase history data. It can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic cyber shopping mall. Finally, it is able to realize the personalized recommendation system with high purchasablity for one to one web marketing through the mobile internet.

키워드