An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu (Temasek Laboratories, The National University of Singapore) ;
  • Phan-Thien, Nhan (Department of Mechanical Engineering, The National University of Singapore)
  • Published : 2008.03.31

Abstract

It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

Keywords

References

  1. Avagliano, A. and N. Phan-Thien, 1998, Torsional flow: effect of second normal stress difference on elastic instability in a finite domain, J. Fluid Mech. 359, 217-237 https://doi.org/10.1017/S0022112097008434
  2. Avagliano, A. and N. Phan-Thien, 1999, Torsional flow stability of highly dilute polymer solutions, J. Non-Newt. Fluid Mech. 84, 19-44 https://doi.org/10.1016/S0377-0257(98)00147-5
  3. Bird, R.B., R.C. Armstrong and O. Hassager, 1987, Dynamics of polymeric liquids, vol.1: fluid mechanics, 2nd ed.,Wiley, New York
  4. Byars, J. A., A. Oztekin, R. A. Brown and G. H. McKinley, 1994, Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks, J. Fluid Mech. 271, 173-218 https://doi.org/10.1017/S0022112094001734
  5. Byars, J. A., 1996, Experimental characterization of viscoelastic flow instabilities, Ph.D thesis, MIT, Cambridge, MA 02139, USA
  6. Coala, A. E., Y. L.Joo, R. C. Armstrong and R. A. Brown, 2001, Highly parallel time integration of viscoelastic flows, J. Non-Newt. Fluid Mech. 100, 191-216 https://doi.org/10.1016/S0377-0257(01)00136-7
  7. Dou, H-S., 2004, Viscous instability of inflectional velocity profile, Proc.of the foruth international conference on fluid mechanics, Ed. by F. Zhuang and J. Li, Tsinghua University Press & Springer-Verlag, Beijing, 76-79
  8. Dou, H-S., 2006a, Mechanism of flow instability and transition to turbulence, Inter. J. of Non-Linear Mech. 41, 512-517. http://arxiv.org/abs/nlin.CD/0501049 https://doi.org/10.1016/j.ijnonlinmec.2005.12.002
  9. Dou, H-S., 2006b, Physics of flow instability and turbulent transition in shear flows, Technical report, National university of singapore, 2006. http://www.arxiv.org/abs/physics/0607004. Also as part of the invited lecture: H.-S. Dou, Secret of Tornado, International workshop on geophysical fluid dynamics and scalar transport in the tropics, NUS, Singapore, 13 Nov. - 8 Dec., 2006
  10. Dou, H-S., 2007, Three important theorems for flow stability, Proc. of the fifth international conference on fluid mechanics, Ed. by F. Zhuang and J. Li, Tsinghua University press & Springer-Verlag, Beijing, 56-70. http://www.arxiv.org/abs/physics/0610082
  11. Dou, H.-S., B. C. Khoo and K. S.Yeo, 2007, Instability of Taylor- Couette flow between concentric rotating cylinders, Inter. J. Thermal Science, accepted and in press, http://arxiv.org/abs/physics/0502069
  12. Dou, H.-S. and N. Phan-Thien, 1999, The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-omega) formulation, J. Non-Newt. Fluid Mech. 87, 47-73 https://doi.org/10.1016/S0377-0257(99)00006-3
  13. Dou, H.-S. and N. Phan-Thien, 2007, Viscoelastic flow past a confined cylinder: instability and velocity inflection, Chemical Engineering Science 62, 3909-3929 https://doi.org/10.1016/j.ces.2007.03.040
  14. Groisman, A. and V. Steinberg, 1998, Mechanism of elastic instability in Couette flow of polymer solutions-experiment, Phys. Fluids 10, 2451-2463 https://doi.org/10.1063/1.869764
  15. Groisman, A. and V. Steinberg, 2000, Elastic turbulence in a polymer solution flow, Nature 405, 53-55 https://doi.org/10.1038/35011019
  16. Huilgol, R. R. and N. Phan-Thien, 1997, Fluid mechanics of viscoelasticity: general principles, constitutive modelling and numerical techniques, Rheology series vol. 6, Elsevier, Amsterdam
  17. Hulsen, M. A., R. Fattal and R. Kupferman, 2005, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms, J. Non-Newt. Fluid Mech. 127, 27-39 https://doi.org/10.1016/j.jnnfm.2005.01.002
  18. Joo,Y. L. and E. S. G.Shaqfeh, 1992, A purely elastic instability in Dean and Taylor-Dean flow, Phys. Fluids A 4, 524-543
  19. Kim, J. M., C. Kim, K. H. Ahn and S. J. Lee, 2004, An efficient iterative solver and high-resolution computations of the Oldroyd- B fluid flow past a confined cylinder, J. Non-Newt. Fluid Mech. 123, 161-173 https://doi.org/10.1016/j.jnnfm.2004.08.003
  20. Kumar, S. and G. M. Homsy, 1999, Direct numerical simulation of hydrodynamic instabilities in two-and three-dimensional viscoelastic free shear layers, J. Non-Newt. Fluid Mech. 83, 249-276 https://doi.org/10.1016/S0377-0257(98)00095-0
  21. Larson, R. G., 1992. Instabilities in viscoelastic flows, Rheol. Acta 31, 213-263 https://doi.org/10.1007/BF00366504
  22. Larson, R. G., E. S. G. Shaqfeh and S. J. Muller, 1990, A purely elastic instability in Taylor-Couette flow, J. Fluid Mech. 218, 573-600 https://doi.org/10.1017/S0022112090001124
  23. McKinley, G. H., R. C. Armstrong and R. A. Brown, 1993, The wake instability in viscoelastic flow past confined circular cylinders, Phil. Trans. R. Soc. Lond. A 344, 265-304
  24. McKinley, G. H., P. Pakdel and A. Oztekin, 1996, Rheological and geometric scaling of purely elastic flow instabilities, J. Non-Newt. Fluid Mech. 67, 19-47 https://doi.org/10.1016/S0377-0257(96)01453-X
  25. Olagunju, D. O. and L. P. Cook, 1993, Linear-stability analysis of cone and plate flow of an Oldroyd-B fluid, J. Non-Newt. Fluid Mech. 47, 93-105 https://doi.org/10.1016/0377-0257(93)80046-E
  26. Oliveira, P. J. and A. I. P. Miranda, 2005, A numerical study of steady and unsteady viscoelastic flow past bounded cylinders, J. Non-Newt. Fluid Mech. 127, 51-66 https://doi.org/10.1016/j.jnnfm.2005.02.003
  27. Pakdel, P. and G. H. McKinley, 1996, Elastic instability and curved streamlines, Phys. Rev. Lett. 77, 2459-2462 https://doi.org/10.1103/PhysRevLett.77.2459
  28. Phan-Thien, N., 1985, Cone and plate flow of the Oldroyd-B fluid is unstable, J. Non-Newt. Fluid Mech. 17, 37-44 https://doi.org/10.1016/0377-0257(85)80004-5
  29. Schlichting, H. and K. Gersten, 2000, Boundary layer theory, Springer, 8th Ed., Berlin, 415-494
  30. Shaqfeh, E. S. G., 1996, Purely elastic instabilities in viscoelastic flows, Annu. Rev. Fluid Mech. 28, 129-186 https://doi.org/10.1146/annurev.fl.28.010196.001021
  31. Shiang, A. H., A.Oztekin and D. Rockwell, 2000, Hydroelastic instabilities in viscoelastic flow past a cylinder confined in a channel, Exp. Fluids 28, 128-142 https://doi.org/10.1007/s003480050017
  32. Smith, M. D., R. C. Armstrong, R. A. Brown and R. Sureshkumar, 2000, Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations, J. Non-Newt. Fluid Mech. 93, 203-244 https://doi.org/10.1016/S0377-0257(00)00124-5
  33. Sureshkumar, R., M. D. Smith, R. C. Armstrong and R. A. Brown, 1999, Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations, J. Non-Newt. Fluid Mech. 82, 57-104 https://doi.org/10.1016/S0377-0257(98)00129-3
  34. White, F. M., 1991, Viscous fluid flow, McGraw-Hill, New York, 2nd Ed., 335-393
  35. Wilson, H. J., 2006, Instabilities and constitutive modelling, Phil. Trans. R. Soc. A 364, 3267-3283