References
-
H. Beirao da Veiga, A new regularity class for the Navier-Stokes equations in
$R^n$ , Chinese Ann. Math. Ser. B 16 (1995), no. 4, 407-412 - R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286
- P. Constantin, Remarks on the Navier-Stokes Equations, New perspectives in turbulence (Newport, RI, 1989), 229-261, Springer, New York, 1991
- C. Foias, Une remarque sur l'unicite des solutions des equations de Navier-Stokes en dimension n, Bull. Soc. Math. France 89 (1961), 1-8
-
C. Fefferman and E. M. Stein,
$H^p$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193 https://doi.org/10.1007/BF02392215 - E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231
- T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), no. 2, 127-155 https://doi.org/10.1007/BF01232939
- H. Kozono and H. Sohr, Regularity criterion of weak solutions to the Navier-Stokes equations, Adv. Differential Equations 2 (1997), no. 4, 535-554
- H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z. 235 (2000), no. 1, 173-194 https://doi.org/10.1007/s002090000130
- P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002
- P. G. Lemarie-Rieusset and S. Gala, Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl. 322 (2006), no. 2, 1030-1054 https://doi.org/10.1016/j.jmaa.2005.07.043
- J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248 https://doi.org/10.1007/BF02547354
- F. Murat, Compacite par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489-507
- K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2) 36 (1984), no. 4, 623-646 https://doi.org/10.2748/tmj/1178228767
- L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136-212, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979
- J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187-195
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993
- E. M. Stein and G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971
- M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1407-1456 https://doi.org/10.1080/03605309208820892
- R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977
Cited by
- Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial–boundary-value problem vol.71, pp.12, 2009, https://doi.org/10.1016/j.na.2009.05.047
- Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces vol.356, pp.2, 2009, https://doi.org/10.1016/j.jmaa.2009.03.038
- Regularity for Ostwald-de Waele type shear thickening fluids vol.22, pp.1, 2015, https://doi.org/10.1007/s00030-014-0273-2
- A note on the regularity criterion in terms of pressure for the Navier–Stokes equations vol.22, pp.9, 2009, https://doi.org/10.1016/j.aml.2009.01.055
- A REGULARITY CRITERION FOR THE NAVIER–STOKES EQUATIONS IN TERMS OF ONE DIRECTIONAL DERIVATIVE OF THE VELOCITY FIELD vol.10, pp.04, 2012, https://doi.org/10.1142/S0219530512500182
- Remarks on regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure vol.92, pp.1, 2013, https://doi.org/10.1080/00036811.2011.593172