References
-
M. A. Aguirre T, A convolution product of (2j)th derivative of Dirac's delta in r and multiplicative distributional product between
$r^{-k}$ and$\nabla(\Delta^j\delta)$ , Int. J. Math. Math. Sci. (2003), no. 13, 789-799 -
M. A. Aguirre T, The expansion in series (of Taylor types) of (k - 1) derivative of Dirac's delta in
$m^2$ + P, Integral Transforms Spec. Funct. 14 (2003), no. 2, 117-127 https://doi.org/10.1080/10652460290029653 -
M. A. Aguirre T, The series expansion of
$\delta^{(k)}$ (r - c), Math. Notae 35 (1991), 53-61 - M. A. Aguirre T, A generalization of convolution product of the distributional families related to the diamond operator, Thai J. Math. 2 (2004), 97-106
-
M. A. Aguirre T, The expansion of
$\delta^{(k-1)}(m^2+P)$ , Integral Transform. Spec. Funct. 8 (1999), no. 1-2, 139-148 https://doi.org/10.1080/10652469908819222 - P. Antosik, J. Mikusinski, and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier Scientific Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw, 1973
- H. J. Bremermann, Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London 1965
-
L. Z. Cheng and C. K. Li, A commutative neutrix product of distributions on
$R^m$ , Math. Nachr. 151 (1991), 345-355 https://doi.org/10.1002/mana.19911510124 - B. Fisher, The product of distributions, Quart. J. Math. Oxford Ser. (2) 22 (1971), 291-298 https://doi.org/10.1093/qmath/22.2.291
- B. Fisher, A noncommutative neutrix product of distributions, Math. Nachr. 108 (1982), 117-127 https://doi.org/10.1002/mana.19821080110
- B. Fisher and K. Tas, The convolution of functions and distributions, J. Math. Anal. Appl. 306 (2005), no. 1, 364-374 https://doi.org/10.1016/j.jmaa.2005.01.004
-
B. Fisher and K. Tas, On the composition of the distributions
$x^\lambda_+$ and$x^\mu_+$ , J. Math. Anal. Appl. 318 (2006), no. 1, 102-111 https://doi.org/10.1016/j.jmaa.2005.05.022 -
B. Fisher and K. Tas, On the non-commutative neutrix product of the distributions
$x^{r}ln^{p}$ |x| and$x^{-s}$ , Integral Transforms Spec. Funct. 16 (2005), no. 2, 131-138 https://doi.org/10.1080/1065246042000272018 - B. Fisher and K. Tas, On the commutative product of distributions, J. Korean Math. Soc. 43 (2006), no. 2, 271-281 https://doi.org/10.4134/JKMS.2006.43.2.271
- S. Gasiorowicz, Elementary Particle Physics, J. Wiley and Sons, Inc., N. Y. 1966
- I. M. Gel'fand and G. E. Shilov, Generalized functions, Vol. I, Academic Press, 1964
- A. Kilicman and B. Fisher, Further results on the noncommutative neutrix product of distributions, Serdica 19 (1993), no. 2-3, 145-152
- B. H. Li, Non-standard analysis and multiplication of distributions, Sci. Sinica 21 (1978), no. 5, 561-585
-
C. K. Li, The product of
$r^{-k}$ and$\nabla\delta$ on$R^m$ , Int. J. Math. Math. Sci. 24 (2000), no. 6, 361-369 https://doi.org/10.1155/S0161171200004233 - C. K. Li, The products on the unit sphere and even-dimension spaces, J. Math. Anal. Appl. 305 (2005), no. 1, 97-106 https://doi.org/10.1016/j.jmaa.2004.10.031
-
C. K. Li, An approach for distributional products on
$R^m$ , Integral Transforms Spec. Funct. 16 (2005), no. 2, 139-151 https://doi.org/10.1080/1065246042000272117 -
C. K. Li and B. Fisher, Example of the neutrix product of distributions on
$R^m$ , Rad. Mat. 6 (1990), no. 1, 129-137 - C. K. Li and E. L. Koh, The neutrix convolution product in Z'(m) and the exchange formula, Internat. J. Math. Math. Sci. 21 (1998), no. 4, 695-700 https://doi.org/10.1155/S0161171298000969
- L. Schwartz, Theorie des distributions a valeurs vectorielles, I, II, Ann. Inst. Fourier, Grenoble 7,8 (1957/58), 1-141. (1-209)
- F. Treves, Topological vector spaces, distributions and kernels, Academic Press, 1970