References
- J. M. Almira and U. Luther, Inverse closedness of approximation algebras, J. Math. Anal. Appl. 314 (2006), no. 1, 30-44 https://doi.org/10.1016/j.jmaa.2005.03.067
- C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1789-1796 https://doi.org/10.1007/s10114-005-0697-z
-
C. Baak and M. S. Moslehian, On the stability of
${\theta}$ -derivations on JB*-triples, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 1, 115-127 https://doi.org/10.1007/s00574-007-0039-0 - J. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658 https://doi.org/10.2307/2316577
- Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000
- J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), no. 2, 221-226 https://doi.org/10.1090/S0002-9939-1986-0818448-2
- W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), no. 1-2, 149-161 https://doi.org/10.1007/s00010-005-2775-9
- A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), no. 3, 303-309 https://doi.org/10.1007/PL00000156
- A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), no. 4, 707-710
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
- N. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), no. 2, 218-222 https://doi.org/10.4153/CMB-1995-031-4
- S. Mazur and S. Ulam, Sur les transformation d'espaces vectoriels norme, C. R. Acad. Sci. Paris 194 (1932), 946-948
- M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 3, 361-376 https://doi.org/10.1007/s00574-006-0016-z
- C. Park, On an approximate automorphism on a C*-algebra, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1739-1745 https://doi.org/10.1090/S0002-9939-03-07252-6
- C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79-97 https://doi.org/10.1007/s00574-005-0029-z
- C. Park, A generalized Jensen's mapping and linear mappings between Banach modules, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 3, 333-362 https://doi.org/10.1007/s00574-005-0043-1
- C. Park, Isomorphisms between C*-ternary algebras, J. Math. Phys. 47, no. 10, Article ID 103512 (2006), 12 pages
- C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, Article ID 41820 (2007), 13 pages https://doi.org/10.1155/2007/41820
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, Problem 16; 2, Report of the 27th Internat. Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309
- Th. M. Rassias, Properties of isometic mappings, J. Math. Anal. Appl. 235 (1997), 108-121 https://doi.org/10.1006/jmaa.1999.6363
- Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378 https://doi.org/10.1006/jmaa.2000.6788
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003
- Th. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), no. 3, 919-925 https://doi.org/10.1090/S0002-9939-1993-1111437-6
- J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), no. 1-2, 191-200 https://doi.org/10.1007/s00010-003-2684-8
- S. Rolewicz, Metric Linear Spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964
Cited by
- CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.001
- APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.195
- Hybrid fixed point result for lipschitz homomorphisms on quasi-Banach algebras vol.27, pp.2, 2011, https://doi.org/10.1007/s10496-011-0109-4
- Stability of a Bi-Additive Functional Equation in Banach Modules Over aC⋆-Algebra vol.2012, 2012, https://doi.org/10.1155/2012/835893